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DAMAGE PROGNOSIS: CURRENT STATUS AND FUTURE NEEDS

by

Charles R. Farrar, Hoon Sohn, Francois M. Hemez, Mark C. Anderson, Matthew T. Bement,
Phillip J. Cornwell, Scott W. Doebling, Nick Lieven, Amy N. Robertson, John F. Schultze

ABSTRACT

Damage prognosis will be an important engineering research topic in the near future because of
the potential life-safety and economic advantages that this technology can provide. This report
summarizes the authors’ viewpoints on the technology development necessary to realize viable
damage prognosis solutions. These viewpoints were developed, in part, as a result of discussions
that took place at a damage prognosis workshop held in Phoenix, Arizona, March 27–29, 2001. The
goal of the workshop was to bring together computer scientists, engineers, statisticians, and industry
representatives working in the area of damage prognosis to identify the current state of the art as
well as the technical challenges posed by the multidisciplinary nature of the damage prognosis
problem.

A consensus definition of damage prognosis was agreed upon and is as follows: damage
prognosis is the coupling of information from the system’s original design loading environments,
structural health monitoring; usage monitoring; past, current, and anticipated future environmental
and operational conditions; previous component and system level testing and numerical modeling to
estimate the remaining useful life of the system. The damage prognosis problem was divided into
three technical areas: 1) sensing and processing hardware, 2) modeling and simulation, and 3) data
interrogation. Issues pertaining to technology integration and applications were also considered. In
the area of measurement and instrumentation, key challenges include increasing the sensor density
and moving to an active sensing approach. Modeling and simulation challenges include predicting
the evolution of component-level damage to system-level failures. Data interrogation challenges
include managing large databases resulting from the increased numbers of sensors, developing
reduced-order predictive models for embedment in microprocessors, and quantifying uncertainty for
these models.

In summary, it is the authors’ opinion that damage-prognosis solutions will not be developed
on a short time scale (18–24 months). This opinion coupled with 1) the multidisciplinary approach
to technology development that includes experimental, analytical, and computational methods; 2)
the interest of this technology to a broad spectrum of industries for applications to their
manufactured products as well as their manufacturing infrastructure; and 3) the fact that solving this
problem will have significant economical and social impact, makes the development of damage
prognosis solutions a grand challenge problem for engineers, material scientists, statisticians and
computer scientists to solve in the twenty-first century.
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1. INTRODUCTION

This report is intended to define the technology referred to as damage prognosis. Issues that are
addressed in this document include the following:

1. A summary of the technologies that are needed to solve the damage-prognosis problem
2. A brief review of the state of the art in damage prognosis
3. A general solution approach to the problem while keeping the perspective that all damage-

prognosis solutions are somewhat application specific
4. Limitations of the technologies that are required to address damage prognosis including key

technology hurdles that must be overcome
5. A brief description of various applications for damage prognosis

Much of the information provided in this report is based on discussions that took place at the
Damage Prognosis Workshop, sponsored by Los Alamos National Laboratory (LANL) and held in
Phoenix, Arizona, on March 27–29, 2001. The workshop participants are listed in Appendix A. This
report begins by defining several terms used throughout the document.

1.1 Definitions

Damage in a structural and mechanical system will be defined as intentional or unintentional
changes to the material and/or geometric properties of the system, including changes to the
boundary conditions and system connectivity, which adversely affect the current or future
performance of that system. As an example, a crack that forms in a mechanical part produces a
change in geometry that alters the stiffness characteristics of the part. Depending on the size and
location of the crack and the loads applied to the system, the adverse effects of this damage can be
either immediate or may take some time to alter the system’s performance. In terms of length
scales, all damage begins at the material level and then, under appropriate loading conditions,
progresses to component- and system-level damage at various rates. In terms of time scales, as
discussed in Section 5, damage can accumulate incrementally over long periods of time, such as
damage associated with fatigue or corrosion. Damage can also occur on much shorter time scales as
the result of scheduled discrete events, such as aircraft landings, and from unscheduled discrete
events, such as enemy fire on a military vehicle. Implicit in this definition of damage is the concept
that damage is not meaningful without a comparison between two different system states.

Usage monitoring is the process of measuring responses of, and in some cases the inputs to, a
structure.

Structural health monitoring (SHM) is the process of damage detection for aerospace, civil,
and mechanical engineering infrastructure. SHM involves the observation of a system over time
using periodically sampled dynamic response measurements from an array of sensors, the extraction
of damage-sensitive features from these measurements, and the statistical analysis of these features
to determine the current state of the system. For long-term SHM, the output of this process is
periodically updated information regarding the ability of the structure to perform its intended
function in light of the inevitable aging and degradation resulting from operational environments.
After extreme events, such as earthquakes or blast loading, SHM is used for rapid condition
screening and aims to provide, in near real time, reliable information regarding the integrity of the
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structure. This process is also referred to as condition monitoring, particularly when it is applied to
rotating machinery, or simply diagnosis.

Damage prognosis is the estimate of a system’s remaining useful life. This estimate is based
on the output of predictive models that develop such estimates by coupling information from usage
monitoring; structural health monitoring; past, current, and anticipated future environmental and
operational conditions; the original design assumptions regarding loading and operational
environments, and previous component and system level testing. Also, “softer” information such as
user “feel” for how the system is responding should be used to the greatest extend possible when
developing damage-prognosis solutions. Stated another way, damage prognosis attempts to forecast
system performance by measuring the current state of the system, estimating the future loading
environments for that system, and predicting through simulation and past experience the remaining
useful life of the system. Figure 1.1 depicts the relationship between usage monitoring, structural
health monitoring, and damage prognosis.

Figure 1.1 The relation between usage monitoring, structural health monitoring, and damage
prognosis.
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Figure 1.2, which shows damage to the USS Denver, emphasizes the challenge presented by
damage prognosis. Clearly, it is not difficult to identify and locate such extreme damage. However,
estimating the impact of this damage on various ship systems and coupling this information with
estimates of the future loading to predict the remaining useful life of the ship, so that authorities can
determine its ability to return safely to port, is a very difficult problem. This difficulty suggests that
developing damage-prognosis solutions is an appropriate grand challenge problem for engineers
involved with aerospace, civil, and mechanical infrastructure. Some features of a grand challenge
problem include the following:

1. The problem must be difficult and something that will not be readily solved in the next few
years

2. Solutions to the problem must be multidisciplinary in nature
3. Solutions to the problem must require developments in experimental, analytical and

computational methods
4. There must be quantifiable measures indicating progress toward the problem solution
5. The problem must be of interest to many industries
6. Solving the problem will have significant economical and social impact

The authors believe that the development of damage-prognosis solutions meets the list of
criteria for a grand challenge problem and that quantifiable measures can be developed to indicate
that a solution has been developed.

Figure 1.2 Damage to the USS Denver.
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1.2 The Damage-Prognosis Solution Process

The actual implementation of a damage-prognosis solution strategy will be application specific.
However, there are major components of such a strategy that are generic to many applications; these
components are outlined in Figure 1.3. In this figure, yellow boxes indicate system-specific
information that will define how the three main technology components (shown in blue):
instrumentation and data processing hardware, data interrogation, and predictive modeling are
implemented in a damage-prognosis solution strategy.

Figure 1.3 Major components of a damage-prognosis strategy.

An important first step in defining damage-prognosis solutions is the classification of the
damage-prognosis problem. While it is unlikely that all or even most damage-prognosis applications
will fit nicely within a rigid, precise classification scheme, through the course of the workshop,
general categories were seen to emerge. To understand the categories, one must first answer three
general questions: 1) what is causing the damage of concern, 2) what techniques should be used to
assess and quantify the damage, and 3) once the damage has been assessed, what is the goal of the
prognosis? Figure 1.4 represents these questions graphically. As discussed below, the categories do
not have sharp boundaries, and many applications will overlap the various categories.

For each potential failure mode, the source of the damage falls into three general categories.
The first category is gradual wear, where damage accumulates slowly at the material or component
level, often on the microscopic scale. Examples of this damage source include fatigue cracking and
corrosion. The second category is predictable discrete events. While the damage typically still
originates on the microscopic scale, it accumulates at faster rates during sudden events that can be
characterized a priori. Examples include aircraft landings and explosions in confinement vessels.
Unpredictable discrete events make up the third category in which unknown and usually severe
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damage is inflicted upon the system at essentially unpredictable times. Examples include foreign-
object-induced fan blade-off in turbine engines, earthquake-induced damage in civilian
infrastructure, or battle damage in military hardware. Of course, there do exist applications where
one failure scenario will fall into all three of these categories at various times. An example is
damage to jet engine turbine blades caused by gradual thermal creep, increased bending stresses
during takeoffs and landings, and impact with foreign objects.

Figure 1.4 Classification of the damage-prognosis problem.

After identifying the type(s) and source(s) of damage, it is then important to determine which
techniques should be used in the damage assessment. The first question that arises concerns whether
the assessment should be done on-line, in near real time, or off-line at discrete intervals. This
consideration will strongly influence the data acquisition and data processing requirements, as well
as set limits on the computational requirements of potential assessment and prognosis techniques.
While it is obvious that measurements should be taken on-line, the type of damage will influence
whether the assessment needs to be done on-line. That is, for unpredictable discrete events, the
assessment must be done on-line to be of any use, thus limiting the choice of the assessment
techniques. However, for gradual wear, there are cases where the assessment need not be performed
in near real time, and virtually any assessment technique may be used.

Assessment techniques can generally be classified as either physics-based or data-based,
though practically speaking, a combination of the two will usually be employed. Physics-based
assessment techniques, as their name implies, use mathematical equations that theoretically predict
the system behavior by simulating the actual physical processes that govern the system response.
These assessments are especially useful for predicting system response to new loading conditions
and/or new system configurations (damage states). However, physics-based assessment techniques
are typically computationally intensive.

Data-based assessment techniques, on the other hand, rely on previous measurements from the
system to assess the current damage state, typically by means of some sort of pattern recognition
method, such as neural networks. However, although data-based assessment techniques may be able
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to indicate a change in the presence of new loading conditions or system configurations, they will
perform poorly when trying to classify the nature of the change. Thus, it is not uncommon to use the
results from a physics-based model to “train” a data-based assessment technique to recognize
damage cases for which no experimental data exists. Typically the balance between physics-based
models and data-based techniques will depend on the amount of relevant data available and the
level of confidence in the physics-based models, as illustrated in Figure 1.5.

Once the current damage state has been assessed, the prognosis problem can begin to be
addressed by determining the goal for the prognosis. Perhaps the most obvious and desirable type of
prognosis is an estimate of how much time remains until maintenance is required, the system fails,
or the system is no longer usable. While this estimate is of high value in systems where damage
accumulates gradually and at predictable rates, it is of less value in more extreme conditions such as
aircraft in combat (see cover photo), where the users of the system (the pilot and mission
commander) really want to know the probability of completing the current mission given the current
assessment of the damage state. Because predictive models typically have more uncertainty
associated with them when the structure responds in a nonlinear manner, as is often the case when
damage accumulates, an alternate goal might be to estimate how long the system can continue to
safely perform in its anticipated environments before one no longer has confidence in the predictive
capabilities of the models that are being used to perform the prognosis.

Figure 1.5 A comparison of regimes appropriate for physics-based modeling and regimes
appropriate for data-based modeling.

Having classified the damage-prognosis problem for the purpose of identifying appropriate
measurement, assessment, and prognostic techniques, a general solution procedure is depicted in
Figure 1.6, where the relationship between data-based and physics-based assessments and
predictions are identified. The process begins by collecting as much initial system information as
possible. This information is used to develop initial physics-based numerical models of the system
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as well as to define the sensing system for state-awareness assessments and whatever additional
sensors are need to monitor operational and environmental conditions. The physics-based models
can also be used to define the necessary sensing system properties (e.g., sensor locations,
bandwidth, sensitivity). As data become available from these sensing systems, they can be used to
validate and update the physics-based models. These data, along with output from the physics-based
models, can also be used to assess the current state of the structure (existence, location, type, and
extent of damage). In addition, detailed information on system configurations and damage states
may become available from time to time (e.g., via destructive testing, system overhauls, or system
autopsies) that can be used to update the physics-based models. Data from the operational and
environmental sensors can be used to develop data-based models that predict future system loading.
The output of the future loading model, state awareness model, and the updated physics-based
model can all be input into a reliability-based predictive tool that can be used to estimate the
remaining system life. Note that “remaining life” can take on a variety of meanings depending on
the specific application. From Figure 1.6 it is clear that various models have to be employed in the
prognosis process. Also, the data-based and physics-based portions of the process are not
independent. As is indicated, the solution process is iterative, relying on experience gained from
past predictions to improve future predictions. It is again emphasized that results of past diagnoses
and prognoses and their correlation with observed response can be used to continually enhance the
system model.

Figure 1.6 A general procedure for a damage-prognosis solution showing the interaction of data-
based and physics-based assessments and predictions with the other issues.
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Several additional points are brought out by this general solution procedure that should be
mentioned:

1. As much information as possible should be used to describe the initial system state,
including “soft” information such as operator “feel” for the system response

2. Damage prognosis will rely on numerous models of different forms
3. The sensing system that is used to assess damage may be different from the one used to

monitor environmental and operational loading, but, most likely, the two systems will
overlap

4. Both the sensing and predictive modeling portions of the process will have to be updated as
more information become available

5. Numerical simulations will need to be used when defining the sensing system in order to
have confidence that this system has adequate properties (e.g., resolution, bandwidth) to
detect the damage of interest

6. Numerical simulations will have to be combined with data-based models in order to estimate
the extent of damage in the SHM portion of the problem

1.3 Motivation for Damage-Prognosis Solutions

The interest in damage prognosis is based on the tremendous potential for life safety and
economic benefits that this technology can provide. The consequences of an unpredicted system
failure were graphically demonstrated by the Aloha Airlines fuselage separation in 1988 (see Figure
1.7). Despite the catastrophic failure of the structure, all but one of the passengers and crew
survived. In response to this event the Federal Aviation Administration (FAA) established the
Aging Aircraft Program to ensure that the integrity of aircraft are maintained throughout their
useable lives. As part of this program, an Airworthiness Assurance Nondestructive Inspection
(NDI) Validation Center was established.1 The center was established to provide the developers,
users, and regulators of aircraft with validated NDI, maintenance, and repair processes and with
comprehensive, independent, and quantitative evaluations of new and enhanced inspection,
maintenance, and repair techniques. Clearly, this catastrophic event has raised the importance of
maintenance, reliability and safety to the public and industry alike.

Beyond the life-safety issues, the impetus from airframe and aircraft engine manufacturers, as
well as other manufacturers of high capital-expenditure products, such as large construction
equipment, for effective damage-prognosis capabilities is business models whereby manufacturers
charge for usage by some type of lease arrangement and meet the cost of maintenance themselves.
Damage prognosis will allow these manufacturers to move from time-based maintenance to the
more cost-effective approach of condition-based maintenance. Also, with effective damage-
prognosis capabilities these companies can establish leasing arrangements that charge by the
amount of system life used during the lease instead of charging simply by the time duration of the
lease.

                                                  

1 See http://www.sandia.gov/aanc/AANC.htm
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Figure 1.7 Damage to Aloha Airline fuselage resulting from fatigue cracks.

The escalating cost of aging aircraft is not simply restricted to the civil fleet. The U.S. Air
Force, through its Engine Rotor Life Extension program (ERLE) expects to commit 63% of its
capital budget to sustainment, and 16% and 18% respectively on development and acquisition.2 On
this basis alone there will be a major thrust in the next few years in the aerospace and defense
industries to reduce costs of maintenance. The current processes applied to military engine turbine
rotors illustrate a need for new prognosis procedures. These rotors are safety critical components on
the aircraft and failure through disc burst results in catastrophic loss of the engine at best, or the
aircraft loss at worst. Guidelines outlined by Larson and Russ6 dictate that a disc is discarded on the
probability of a one-in-one-thousand chance of failure after inspection. The cost of a single disk is
in the range of $300,000 to $400,000. In this case, the probability is that 999 out of 1,000 discs are
being discarded before they have reached their full safe-operating life. On this basis, the minimum
component cost saving—excluding benefits derived by reduced maintenance and inventory
achieved by even a 10% increase in life resulting from improved prognosis methods—is
approximately $30–40 million for 1000 discs.

Perhaps the most advanced and most scrutinized health monitoring systems are used in
helicopters. The Health and Usage Monitoring Systems (HUMS) have already been operating
successfully in transmission monitoring and engine applications. Their effectiveness and reliability
has been endorsed by the Civil Aviation Authority (CAA) and FAA and are now being considered
for more general structural health monitoring. The most recent cost estimates for implementation of
HUMS depend on the level of coverage required:3

1. Specific HUMS: partial implementation of a specific component e.g. engine or transmission
$10,000–$50,000/unit

2. Mid-Range HUMS: instrumentation of a range of structurally significant items (SSIs), but
not full coverage, $75,000–$125,000/unit

3. Complete HUMS: $150,000–$250,000/unit

                                                  

2 J. Larson, S. Russ, et al., “Engine Rotor Life Extension (ERLE),” Damage Prognosis Workshop, Phoenix, AZ, March
2001.
3 G.F. Forsyth and S.A. Sutton, “Using Econometric Modeling to Determine and Demonstrate Affordability,”
Tiltrotor/Runway Aircraft Technology and Applications Specialists’ Meeting of the American Helicopter Society,
Arlington, VA, 2001.
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Although the cost of these units is falling because of adoption of commercial off-the-shelf
(COTS) technology, Forsyth identifies the data management as the largest single cost associated
with these systems. This issue is significant because Forsyth acknowledges that “considerably more
data” would be required for robust verification of parameters needed for prognosis. Currently such
systems are used for identifying damage. Work is ongoing in the field to use HUMS for prognosis
through the Seeded Defect Program4 whereby electrical discharge machining (EDM) is used to
introduce tightly defined faults within gears. The outcome of this program has been an effective
demonstration of damage diagnosis and life extension. The options for prognosis have not been
fully explored though HUMS, but the achieved life extension from the current implementation of
usage monitoring of 73 SSIs has led to cost savings on replacement parts of US$175 per hour of
operation, excluding the savings associated with installation and removal of components.5 With
multichannel component usage monitoring, White reports an average increase in available
structural-fatigue life of 380% over the original design life. On this basis there seems to be an
overwhelming argument in favor of development of robust, low-cost systems for health and usage
monitoring.

In the civil engineering field, the driver for prognosis is largely governed by large-scale
discrete events rather than more continuous degradation. Typical examples are aerodynamic gust
loads on long span bridges and earthquake loading on all types of civil infrastructure. Although
cyclic loads caused by traffic are also a consideration, the discrete events are the ones that require
immediate prognosis for future use. Using the Kobe earthquake as an example, some buildings were
subject to two years of scrutiny before a decision was made on their future use or demolition.6

Clearly this delay had a significant commercial impact on the economic capacity of the city beyond
the reconstruction costs. The most effective way to mitigate costs associated with building
reoccupation is through timely prognosis of the system’s load-bearing elements and connections. In
this case, prognosis is required to ensure that the building can withstand the aftershock associated
with a significant seismic event. This application requires a much denser array of sensors to identify
local structural degradation than is typical for most current strong-motion instrumentation systems
designed for seismic monitoring.7 Current wired technology in the seismic field has a cost of
$10,000 per node, including installation, which limits the sensor density for this application.8 In
California, the most densely instrumented structures have on the order of 10–30 sensors to measure
seismic response. For damage prognosis, a one to two orders of magnitude increase in sensor
density is required. It is the authors’ opinion that this increase can only be achieved economically
by the use of new sensing technology such as wireless, self-assembling, embedded devices based on
integrated circuit (IC) fabrication technology.

                                                  

4 A.J. Hess and W. Hardman, “SH-60 Helicopter Integrated Design System (HIDS) Program Experience and Results of
Seeded Fault Testing,” DSTO Workshop on Helicopter Health and Usage Monitoring Systems, Melbourne, Australia,
1999.
5 D. White, “Helicopter Usage Monitoring Using the MaxLife System,” DSTO Workshop on Helicopter Health and
Usage Monitoring Systems, Melbourne, Australia, 1999.
6 C.A. Taylor, Ed., “Shaking Table Modeling of Geotechnical Problems,” ECOEST/PREC8, Report No. 3, p. 190, 1999.
7 C.R. Farrar and H. Sohn, “Condition/Damage Monitoring Methodologies,” Proceedings Invited Workshop on Strong-
Motion Instrumentation of Buildings, J.C. Stepp and R.L. Nigbor Eds., The Consortium of Organizations for Strong
Motion Observation Systems (COSMOS) publication CP-2001/04, Emeryville, CA ,November 2001.
8 S.D. Glaser, “Smart Dust and Structural Health Monitoring,” Damage Prognosis Workshop, Phoenix, AZ, March
2001.
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Damage identification may significantly mitigate the economic impact of seismic disruption to
civil engineering infrastructure. The figures shown below are the results of Coburn and Spence’s9

work developing models of the fiscal impact caused by earthquake damage. The average annual
worldwide repair and reconstruction costs associated with mechanical failures and earthquake
damage is in the region of $60 billion. This figure does not include consequential losses (e.g. loss of
revenues resulting from damage to a manufacturing facility), and costs caused by operator errors.
Significantly, in-service mechanical failures contribute 20%–40% of all losses within a given
engineering sector. Some of the major components of the $60 billion loss are (approximately): $1.5
billion resulting from commercial aircraft hull losses, $1.5 billion resulting from repair and
reconstruction following petrochemical industry disasters and $45 billion associated with
earthquake damage. The trends of most concern in these statistics are the costs associated with the
petrochemical industry, which have risen tenfold in real terms over the last 30 years, and with
postearthquake costs, which are rising up to 20% per annum. During 1995, for example, the
earthquakes in Northridge and Kobe were estimated to cost $220 billion. In 1999, the severe
damage caused by earthquakes in Colombia, Turkey, Greece, and Taiwan showed that this is a
problem of global proportions.

In Appendix B, some other applications that are of immediate interest for damage prognosis are
outlined. These include creep rupture in turbine blades, fighter aircraft condition monitoring in
hostile environments, flaw initiation and propagation in explosive containment vessels, and
composite fuel tanks on reusable launch vehicles. All have the common attribute of being associated
with safety-critical hardware where robust damage prognosis can provide high added value.
Therefore, there is a considerable cost benefit to be obtained in developing effective damage-
prognosis methods.

1.4 Disciplines Needed to Address Damage Prognosis

As discussed in detail in the body of this report, damage-prognosis solutions may be realized by
the integration of a robust, densely populated sensing array and a system-specific adaptable
modeling capability, both deployed on-board the system via advanced micro-electronic hardware.
This integration requires that many disciplines be brought to bear on the damage-prognosis
problem. These disciplines include, but are not limited to, the following:

1. Engineering Mechanics: transient nonlinear computer simulation, system performance
analysis, and damage evolution material models

2. Reliability Engineering: probabilistic inference, probabilistic risk assessment, and reliability
methods

3. Electrical Engineering: micro-electro-mechanical systems (MEMS), wireless telemetry,
power management, and embedded computing hardware

4. Computer Science: networking, machine learning
5. Information Science: data compression and communication, large-scale data management,

signal processing
6. Material Science: smart materials, material failure mechanisms, self-healing materials
7. Statistics and Mathematics: statistical process control, model reduction, pattern recognition,

and uncertainty propagation

                                                  

9 A. Coburn and R. Spence, Earthquake Protection, John Wiley, November 2002.
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When so many disciplines are required to effectively tackle the damage-prognosis problem,
technology integration becomes a major issue that must also be addressed.

1.5 Description of the Report

This report provides a brief summary of the current state of the art in damage prognosis. This
summary will be followed by more detailed discussions of the three main technology areas that
form the damage-prognosis solution: instrumentation and data processing hardware, data
interrogation, and predictive modeling. In these discussions the authors have tried to capture the
following:

1. The areas of these three respective technologies that are currently applied to the damage-
prognosis problem

2. The portions of these technologies that must be further developed for more widespread
applications of damage prognosis

3. Key technology hurdles
4. Issues associated with technology integration

The report concludes by citing some specific applications for damage prognosis and by providing a
brief summary of damage prognosis demonstration problem being worked on at LANL.
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2. BACKGROUND AND CURRENT STATE OF APPLICATION

The main findings of a brief review of the literature on damage prognosis are summarized in
this section. One difficulty of such a review is that, like most emerging research and technology,
damage prognosis is not well defined yet and the engineering community may not have adopted
standard terminology for this technology. As an example, a search of the Engineering Index
electronic database from 1992 to the present on the key words “damage prognosis” (restricted to
English) yields only three articles.10,11,12 A similar search of the SciSearch database yielded five
articles, all of which were related to medical damage prognosis. These results clearly indicate that
either the engineering community has not adopted the term damage prognosis or that very few
studies have been published on this topic. The authors believe that the dearth of articles is related to
some combination of these two issues, as it is known that there are applications of damage-
prognosis technology to rotating machinery.

Many technologies could potentially contribute to the development of damage prognosis, such
as high-fidelity modeling, computer science, statistical analysis, data interrogation, new
instrumentation technologies and active control. The literature review reported herein does not
attempt to summarize the state of the art and major accomplishments in each one of these sciences
and technologies. Instead, we define what is generally meant by damage prognosis when it has been
deployed for a particular application. This summary includes a brief description of the technologies
that could potentially impact the development of damage prognosis. The summary of the main
characteristics of each one of them does not constitute a thorough nor exhaustive review.

2.1 Scope of the Literature Review

To define which publications are relevant to the field of damage prognosis, it is first assumed
that damage refers primarily to structural damage, as defined in the introduction, as opposed to
damage to electrical components or failure of operating system software. Two key elements of
damage prognosis are, first, diagnosis or the assessment of the current state of the structure and its
history and, second, prognosis, which provides a predicted set of consequences for assumed future
operational and environmental loading conditions.

The primary objective of structural diagnosis is to determine the current ability of a structure to
carry loads. The structural-health monitoring literature has been addressing this problem for several
decades. This technology development has been driven by applications from the aerospace, civil
and mechanical engineering fields. Applications include both structures and machinery, with
machinery applications referred to as condition monitoring. Extensive reviews on structural
diagnosis are found in Doebling et al.,13 Sohn et al., 14 and Housner et al. 15 There are numerous

                                                  

10 J. Fu, A. Ray, and J.H. Spare, “Load Scheduling and Health Management of Electric Power Generation Systems,”
Proc. of the American Control Conference, 6, pp. 4849–4854, 2002.
11 F.M. Hemez and S.W. Doebling, “Model Validation and Uncertainty Quantification,” Proc. of the International
Modal Analysis Conference—IMAC, 2, pp.1153–1158, 2001.
12 D.E. Adams and M. Nataraju, “A Nonlinear Dynamical Systems Framework for Structural Diagnosis and Prognosis,”
Int. J. of Engineering Science, 40 (17), pp. 1919–1941, 2002.
13 S.W. Doebling, C.R. Farrar, M.B. Prime, and D.W. Shevitz, “Damage Identification and Health Monitoring of
Structural and Mechanical Systems From Changes in Their Vibration Characteristics: A Literature Review,” Los
Alamos National Laboratory report LA-13070-MS, May 1996. (Available at www.lanl.gov/projects/damage_id)
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conferences16,17,18,19 and more recently a refereed journal 20 dedicated to this topic. Technologies and
methods generally involved in the development and deployment of diagnosis systems are
instrumentation, data acquisition, finite element modeling, feature extraction, and test-analysis
correlation for parametric calibration. One critical aspect of diagnosis is to assess not only the
current “state” of the system, but also its history. Another critical aspect is to account for modeling,
operational and environmental uncertainty. The importance of these aspects has only recently been
recognized and only a small number of publications currently address these issues compared to the
large body of work published on linear, history-independent, and deterministic approaches.

The primary objective of structural prognosis is to assess the ability of a system to carry out an
intended function. This assessment is basically a decision-making process where answers must be
provided to questions such as “Given an estimate of the current structural state of the bridge, how
much future traffic loading can be tolerated?” or “Given a damage state of the bridge and a traffic
load, what is the safety margin?” Prognosis is therefore a prediction or extrapolation problem,
which generally presents challenges across all fields and necessitates a probabilistic approach.
Various models of damage and estimations of future loading are combined to describe a space of
potential operating conditions, and decisions are based on the outcome of each analysis analogous
to probabilistic risk assessment. Other criteria such as economic, human, and safety factors and risk-
versus-payoff analysis can be included in the decision-making process. The tools by which
predictions and extrapolations are made are models and simulations. Models can be derived through
measurement of a physical system, empirical observations, knowledge-based reasoning, or
mathematical and numerical simulations.

The literature indicates that the only serious attempt at integrating damage prognosis around a
predictive capability is encountered in the field of rotating machinery.21 A recent account of the
work performed in rotating machinery can be obtained from the literature.22 The reason why
successful applications of damage prognosis are documented in rotating machinery is because of the
availability of large data sets from experiments, many of which include run-to-failure data. Also,
rotating machines are typically operated in well-controlled environments and the future operational
conditions and loading are often well defined. The databases can be used to develop regression
models for failure prediction. Full-scale failure tests can be performed on critical components to
augment these databases. One major drawback of this approach is that complicated systems that
have multiple damage mechanisms can generally not be tested to failure.

                                                                                                                                                                        
14 H. Sohn et al., “A Review of Structural Health Monitoring Literature: 1996–2001,” Los Alamos National Laboratory
report LA-13976-MS (2003).
15 G.W. Housner, et al., “Structural Control: Past, Present and Future,” (Section 7, Health Monitoring) Journal of
Engineering Mechanics, ASCE, 123 (9), pp. 897–971, 1997.
16 The 4th International Structural Health Monitoring Workshop, Palo Alto, CA, 2003.
17 The 6th International Symposium on Nondestructive Evaluation of Aging Infrastructure, San Diego, CA, 2003.
18 The 5th International Conference on Damage Assessment of Structures, Southampton, UK, 2003.
19 The 1st European Structural Health Monitoring Workshop, Paris, France, 2002.
20 The International Journal of Structural Health Monitoring, F-K Chang Edt., Sage Publications.
21 J.S. Mitchell, Introduction to Machinery Analysis and Monitoring, PenWel Books, Tulsa, OK, 1992.
22 H.C. Pusey and R.B. Rao, Proceedings of the 13th International Congress on Condition Monitoring and Diagnostic
Engineering Management, Houston, TX, December 3–8, 2000. Published by the Society for Machinery Failure
Prevention Technology, Haymarket, Virginia.
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2.2 Elements of Prognosis Technology

Based on the literature reviewed, eight subjects are identified as contributing to the deployment
of damage-prognosis systems. The present literature review does not attempt to define the state of
the art of each one of them because of the very large body of literature that would have to be
examined. Instead, the efforts have been focused on collecting papers where damage prognosis is
dealt with to some extent and on identifying which ones of these subjects are addressed. The list of
publications reviewed is provided in Appendix C and Appendix D. A compilation of this analysis is
also provided in Appendix C. The eight subjects considered are defined below.

1. Advanced Modeling and Architectures: Advanced constitutive models, multiple-scale
models, coupled-field physics, fracture and damage evolution mechanics, high-fidelity
models, innovative inverse problem solving, model updating, calibration experiments, and
parallel processing.

2. Data Interrogation: Statistical analysis, outlier detection, data normalization, data fusion,
group classification, and hypothesis testing.

3. Elements of Prognosis Capability: Implementation of predictive modeling, model
validation experiments, assessment of future loading, calibration of reliability or failure
criteria, and examples of decision making based on prognosis.

4. Local Actuation and Processing: Localized actuation and sensing, local data processing,
programmable digital signal processing (DSP) chips, field programmable gate arrays,
development of specialized chips, and system power.

5. Novel Sensing and Telemetry Technology: Micro electro-mechanical systems (MEMS),
fiber optics, non-intrusive measurements, development of new sensor types, and wireless
communication.

6. System Integration: Issues related to the integration and deployment of damage-prognosis
technologies, integration of hardware and software components, data management, and
evolution of models.

7. Surrogate Modeling: Surrogate models, metamodels, fast-running models, statistical
models, data compression, feature extraction, and reduction of large data sets.

8. Uncertainty Quantification: Quantification of uncertainty, forward propagation of
uncertainty, sampling strategies, design of experiments, and nonprobabilistic approaches.

In the summary tables presented in Appendix C, the eight subject categories are identified
using the acronyms defined in Table 1. There may be some degree of redundancy between several
of these categories. For example, the applicability of a novel sensing technology (5-NST) is often
discussed in conjunction with system integration (6-SI). Therefore, there is a strong overlap
between categories 5-NST and 6-SI. The number of categories could probably be reduced to four or
five nonoverlapping ones. However, the current classification provides more flexibility, as some
publications are very specific while others describe concepts and experiments in a broader sense.
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Table 1. Methods and Technologies of Damage Prognosis
Symbol Category
1-AMA Advanced Modeling and Architectures
2-DI Data Interrogation
3-EPC Elements of Prognosis Capability
4-LAP Local Actuation and Processing
5-NST Novel Sensing Technology
6-SI System Integration
7-SM Surrogate Modeling
8-UQ Uncertainty Quantification

The only truly relevant category for this literature review is the third one, Elements of
Prognosis Capability (3-EPC). Techniques that possess elements of a prognosis capability should
present to some degree the development or application of predictive modeling to a particular
problem. Very few papers have been found so far that discuss the deployment of a damage-
prognosis system for an application other than rotating machinery. The very precise reasons why
this deficiency exists are summarized in Section 2.3. The other categories are included because of
the close connection to damage diagnosis and prognosis. Nevertheless, little work has currently
been found that attempts to integrate several of these categories. No publication has been found that
addresses all eight categories.

2.3 Analysis of the Literature

The instances of damage prognosis documented in the literature reviewed here consist of
predicting criteria such as time to failure, remaining useful life, or safety margin based on
information regarding the system and estimated future environmental and operational conditions. In
the following discussion, the criterion predicted is denoted by the symbol y and the information
required to make the prediction is denoted by the symbol p. Damage prognosis therefore consists of
developing a model of the form y = M(p). Once the model has been developed, it is deployed for the
application of interest. An instrumentation system or a combination of model predictions and
measurements provide an estimate of the future p, and the model y  = M(p) makes the next
prediction. Adaptability is where the model is recalibrated or its functional form is revisited as soon
as new data and predictions become available. Another important characteristic is that most
applications presented in the literature deal with well-defined damage scenarios and operating
conditions that can be adequately controlled.

Figure 2.1 illustrates this concept where data points that define an unknown relationship
between an input parameter p and an output observation y are plotted. For example, a test bed can
be developed to characterize the dynamics of typical gearbox mechanism when the system
transitions from a healthy state to a damage state and, eventually, to total failure. A crack is initiated
in one or several of the gear teeth and the vibration response of the gearbox is monitored. As the
gear mechanism is subjected to loads, the cracks undergo high-fatigue cycles and damage
progresses. Periodic measurements are collected and the features y extracted from the vibration
response are tabulated for various crack lengths p. Next, a functional form y = M(p) is assumed and
parameters of the model are calibrated. The objective of the calibration experiment is to obtain the
optimal model that best matches the observation data. If the system investigated can be tested over a
wide range of environmental and operating conditions, then the model will be able to make
predictions for nominal operating conditions all the way to failure.
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Figure 2.1 Failure model via curve fitting.

Figure 2.1 shows a representative curve fit where a continuous relationship is established
between the damage indicator and the prognosis criterion. Several such curve-fitting methods are
mentioned in the literature. They are collectively referred to as continuous curve fitting in this
document. They include the least-squares and generalized least-squares approaches, statistical
inference methods, and hypothesis testing methods. Prognosis models can also be developed that
are not continuous. Group classification is an example of such discrete prognosis models. Figure
2.2 illustrates the case where the same data as previously shown in Figure 2.1 are classified in four
groups. Such models would typically be developed based on group classification techniques. When
a new measurement becomes available, the statistical estimation problem is essentially an
orthogonal projection problem, where the distance between the new data and the existing subspaces
is minimized in a multidimensional space.

The methods for constructing predictive models encountered in the damage-prognosis literature
can be classified within the general paradigm of pattern recognition. Most often, data sets for
training are generated by physical observation. In instances where the prognosis experiment can be
run to failure, a complete characterization of the system is obtained from which a regression model
can be developed. Very successful results are reported when such information is available.

As mentioned previously, the only successful application of damage prognosis consistently
reported in the literature is the field of rotating machinery. Applications documented include
machinery and industrial equipment that involves bearings, gearboxes, shafts, transmission lines,
and blade assemblies. The main reason why damage-prognosis systems are successfully deployed is
because failure testing of critical components is generally available. Failure scenarios and damage
mechanisms have long been identified and it is possible to design model validation experiments in
which the mechanical component under investigation is tested to failure. Because laboratory
experiments can reproduce a wide range of environmental and operational conditions, the prediction
models inferred from test data can be used with confidence. The availability of a large number of
similar units is also an advantage. For example, large databases are available for turbine engines.
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Because the damage mechanisms are relatively consistent, it is possible to treat the observations
obtained from a large number of “similar” systems as replicate data and to estimate the probability
distributions of failure. Computational failure and reliability prediction methods that are based on
finite element analysis and probability approaches are applied with success to turbine engines
because a large body of knowledge can be translated into prior distributions.

Figure 2.2 Failure model via group classification.

Several potential difficulties for the deployment of damage prognosis in applications other than
rotating machinery are mentioned in the literature. They can be classified into four main categories:

1. Testing: For complex engineering applications, testing systems to failure may not be an
option. It may be possible to isolate a critical component and to develop a specialized test bed. But
in most cases, the interaction of a critical component with other components and the degree of
variability of environmental and operating conditions will make such laboratory experiments of
limited value. Numerical simulation is generally mentioned as the only alternative to limited or
unavailable testing; however, it is not certain that complex systems can be modeled and analyzed
numerically.

2. Sensing: It may not be possible to fulfill the objectives of damage diagnosis and prognosis
using the currently available sensing technology. An example often mentioned is the assessment of
damage using vibration measurement. A crack is visible only if the wavelength of the vibration
measured is significantly less than the crack’s length, which is a requirement that the conventional,
modal based measurement and analysis techniques do not always satisfy. For this reason, many
attempts at damage diagnosis are based on innovative sensing technologies such as fiber optics-
based optical measurements or acoustic emission. Demonstrating their practicality for a real-world
field application remains an open question. Communication and transmission of the data collected
can also impose serious limitations on the type and number of sensors available. A constraint
mentioned in the literature is the deployment of wires between sensors and the central data
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processing unit. Hardware compactness, packaging, and on-board integration are identified as
important issues as well.

3. Variability: Unit-to-unit variability makes it difficult to develop a prognosis criterion
because the causes of variability should theoretically be included in the prognosis model or
criterion. Variability can originate from manufacturing and assembling processes. Maintenance
history is also a significant source of variability because similar systems do not always receive the
same maintenance, part replacement, and hardware upgrades at the same time. Even the acts of
disassembly and reassembly can be a considerable source of uncertainty.

4. Confidence: Another consequence of variability is that it makes it difficult to assess with
confidence the outcome of a prognosis. Confidence is generally represented by probability intervals.
For example, Figure 2.3 illustrates the prognosis model shown in Figure 2.1 to which ± 2σ
confidence intervals have been added. Confidence will typically decrease in regions where less data
are available and where the sources of variability exhibit greater influence on the output prognosis
feature. Probability-based assessment of confidence intervals is more difficult when the propagation
of uncertainty methods cannot rely on repeatability.

Figure 2.3 Assessment of confidence intervals in predictive modeling.



21

3. SENSING AND DATA ACQUISITION

Instrumentation and data acquisition issues are major concerns that must be addressed when
developing damage-prognosis solutions. This report will address these concerns by presenting three
different instrumentation strategies for damage detection and prognosis. These strategies are
presented in increasing order of sophistication. The primary difference in these strategies is the up-
front effort to integrate testing and numerical simulations, interdisciplinary communication, and to
design instrumentation specifically for the system to be monitored. These strategies are then
discussed in terms of conceptual issues associated with the development of a sensing and data
acquisition system that are fundamental to making significant progress in damage prognosis. Next,
more general challenges such as the technological issues of sensors, data acquisition and storage,
data processing using feature extraction, and the combined role of testing/modeling in damage
prognosis are addressed. This section concludes with a summary of the authors’ opinions on the
properties of a future sensing and instrumentation system for damage prognosis.

As previously mentioned, this report emphasizes structural dynamics while accepting that
structural failures are not necessarily the dominant factor in many system failures. Therefore, the
sensing issues that will be addressed are primarily related to detecting structural damage through
some measure of kinematic quantities. Additional sensors will be needed to assess operational and
environmental conditions in an effort to separate their effects from those caused by damage. The
most fundamental issue that must be addressed when developing a sensing system for damage
prognosis is the need to capture the structural response on widely varying length and time scales.

3.1 Sensing and Data Acquisition Strategies for Damage Prognosis.

3.1.1 Strategy I

A less effective, but often used, approach to deploying a sensing system for damage detection
and prognosis consists of a sparse sensor array, installed on the structure after fabrication, possibly
following an extended period of service. Sensors are typically chosen based on previous experience
and availability. The selected sensing systems often have been commercially available for some
time, and the technology may be twenty years old. Excitation is limited to that provided by the
ambient operational environment. The physical quantities that are measured are often selected in an
ad hoc manner without an a priori quantified definition of the damage that is to be detected or any a
priori analysis that would indicate that these measured quantities are sensitive to the damage of
interest. This approach dictates that damage-sensitive data features are selected “after the fact”
using archived sensor data and ad hoc algorithms. This scenario represents many real-world
systems, particularly those deployed on civil engineering infrastructure.

The common damage-detection approach associated with Strategy I is that a set of undamaged
and damaged structures are subjected to nominally similar excitations and their responses measured.
Features determined using trial and error or physical intuition are extracted from the measured
response and correlated to damage using a variety of methods that vary in their level of
mathematical sophistication. A comparison of power spectral density functions illustrates the type
of basic data analysis associated with this sensing system strategy. When data are not available from
the damaged structure, the damage detection process reverts to some form of outlier detection. In
this case, trial and error or physical intuition is again used to define the damage-sensitive features
that will be classified as outliers because of damage and to set thresholds that define when these
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features can be considered outliers. Despite the ad hoc nature of this process, Strategy I is
sometimes effective for damage detection but typically shows limited success for damage location
and quantification. This approach is often enhanced by a comprehensive historical database. For
example, the availability of information regarding the damage state and corresponding measurement
results for large numbers of nominally identical units will significantly improve the ability to detect
damage in subsequent units when Strategy I is employed. A major drawback of this approach is
that, typically, the sensing system is not designed to measure the parameters necessary to allow one
to separate operationally and environmentally induced changes from changes caused by damage.

3.1.2 Strategy II

Strategy II is a more coupled analytical/experimental approach to defining the sensor system
definition and incorporates some significant improvements over Strategy I. First, damage is well
defined and to some extent quantified before the sensing system is designed. Next, the sensing
system properties, including actuator properties, are defined based on the results of numerical
simulations or physical experiments and are based on the data analysis procedures (e.g., feature
extraction and statistical discrimination) that will be employed in the damage-detection application.
This process of defining the sensor system properties will often be iterative. Sensor types and
locations are chosen because the numerical simulations or physical tests show that the expected type
of damage produces known, observable, and statistically significant effects in features derived from
the measurements. Additional sensing requirements are then defined based on how changing
operational and environmental conditions affect the damage detection process. However, all sensors
are still chosen from the commercially available sensors that best match the defined sensing system
requirements. Finally, as a result of this coupled approach to designing the sensing system, there is
the possibility that the extent of the damage can be directly correlated to the sensor measurements
through the numerical or physical models that were used to define the sensing system properties.

Strategy II incorporates several enhancements that will typically improve the probability of
damage detection:

1. Well-defined and quantified damage information that is based on initial system design
information, numerical simulation of the postulated damage process, qualification test
results, maintenance records, and system autopsies

2. Sensors that are shown to be sensitive enough to identify the predefined damage when the
measured data are coupled with the data analysis procedures

3. Active sensing that is incorporated into the process: a known input is used to excite the
structure with an input waveform tailored to the damage detection process

4. Sensors that are placed at locations where responses are known from analysis, experiments,
and past experience to be sensitive to damage

5. Features extracted from the measured data that are known to be sensitive damage indicators
based on analysis, experiments, and past experience

6. Additional measurements that can be used to quantify changing operational and
environmental conditions

7. Damage extent estimates that are obtained by correlating sensor readings with information
from numerical or physical models of the damage and its effect on the system

The number of studies in the technical literature that take this approach to developing a sensing
system to detect damage is quite small. In actuality, most sensing systems used to detect damage
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take an approach somewhere in between Strategy I and Strategy II. However, Strategy II still does
not directly address the “predicting remaining life” issue of damage prognosis.

3.1.3 Strategy III

Strategy II is much more effective in damage detection than Strategy I, but does not
specifically address the instrumentation issues associated with damage prognosis. Damage
prognosis requires various validated models to predict future loading, damage accumulation, and
remaining system life. The need to develop these models, update the models as new data become
available and quantify the uncertainty in these models dictates the enhanced sensing system
requirements associated with Strategy III. These models will incorporate the measurement data and
produce a structural state estimate as in Strategy II. Then the model will be used to predict the
evolution of this state through time, and finally to translate these progressive estimates into an
estimate of remaining useful life.

In summary, Strategy III includes additional predictive capabilities that dictate sensing system
requirements beyond those of Strategies I and II. The following are additional modeling capabilities
and their associated sensing system requirements:

1. Numerical models, developed in conjunction with a series of nondestructive model
validation experiments, that predict the damage evolution

2. A sensing system designed to provide information that can be used to develop future loading
models

3. A procedure to validate the numerical damage prediction model through test-analysis
correlation using measured system responses to a known set of physical excitations

4. The data processing and storage capabilities necessary to perform measurements on an
ongoing basis

5. A procedure to extract damage-sensitive features from the measured data so the features can
be used to monitor the evolution of damage

6. Reduced order models that can predict remaining system life

This strategy, which is the most sophisticated, clearly provides the most robust method for
viable prognosis. Several serious challenges are involved in its implementation. The following
section lists the major challenges related to sensing and data acquisition for damage prognosis.

3.2 Instrumentation: Conceptual Challenges

The above three strategies identify conceptual challenges to effective damage prognosis from a
sensing system perspective. These challenges include the following:

1. The ability to capture local and system-level response; that is, the need to capture response
on widely varying length and time scales

2. The need for a sensing system design methodology
3. The need to integrate the predictive-modeling and data-interrogation processes with the

sensing-system design process
4. The ability to archive data in a consistent, retrievable manner for long-term analysis
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These challenges are nontrivial because of the tendency for each technical discipline to work
more or less in isolation. Therefore, an integrated systems-engineering approach to the damage
prognosis process and regular, well-defined routes of information dissemination are essential. The
subsequent portions of this section will address specific sensing-system issues associated with
damage prognosis.

3.2.1 What Types of Data Should be Acquired

Instrumentation, which includes sensors and data acquisition hardware, first translates the
system’s dynamic response into a signal, such as an analog voltage signal, that is proportional to the
measured quantities of interest. Next, the analog signal is discretely sampled to produce digital data.
To begin defining a sensing system for damage prognosis, one must first define the types of data to
be acquired. The data types fall into three general categories of kinematic, environmental and
operational quantities. There are many traditional sensors that can be used to measure these various
physical quantities, and there are emerging technologies that could have tremendous impact on the
future of damage prognosis. Although this report focuses on more traditional sensing technology, it
acknowledges that sensing technology is one of the most rapidly developing fields related to
damage prognosis and therefore one must always be looking for new technologies that are
applicable to the prognosis problem.

3.2.1.1 Kinematic Quantities

The “traditional” sensors used to measure kinematic quantities include wire resistance strain
gauges, mechanical displacement transducers such a linear variable differential transducers, and
piezoelectric accelerometers. In general, the accelerometers provide an absolute measurement at a
point on the structure while the displacement and strain sensors provide relative measurements over
typically short gage lengths. These sensors are used extensively for aerospace, civil, and mechanical
engineering applications. Conditioning electronics for these sensors have evolved from bulky
vacuum tube systems to small, sophisticated, solid-state devices. A wide variety of sensors that can
accommodate many different applications are available off the shelf.

The principal emerging kinematic sensing technologies include micro-electro-mechanical
systems (MEMS), piezoelectric (PZT) actuator/sensors (discussed in Section 3.2.6), and fiber optic
strain sensors. Commercially available MEMS devices can measure strain, and rotational and linear
acceleration. A MEMS accelerometer is shown in Figure 3.1. Once fully developed, MEMS sensors
have the potential to impact a variety of sensing activities based on their versatility, small size, and
low cost when manufactured in large numbers. These properties will allow the sensor density on a
structural system to increase significantly, which is essential to improve damage-prognosis
technology. MEMS can be integrated with on-board computing to make these sensors self-
calibrating, and self-diagnosing. This integration of the sensor with microprocessors defines the
“smart sensor” concept. Inhibiting MEMS use today are issues such as commercial availability,
traceable calibration, and a track record of stability and ruggedness when used for long-term
structural monitoring activities. In contrast, current commercially available traditional
accelerometers have been proven to be reliable and stable. These accelerometers incorporate on-
board signal conditioning and may soon have on-board A-D conversion. However, in comparison to
anecdotal reports of MEMS sensors, the traditional accelerometers typically don’t measure multiple
parameters such as both rotational and linear acceleration. The traditional sensors are relatively
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expensive (hundreds of dollars for conventional piezoelectric accelerometers versus tens of dollars
for MEMS accelerometers), and they are typically not integrated with microprocessors.

Figure 3.1 A MEMS accelerometer.

Fiber-optic strain gauges are mentioned here as a nearly commercially available emerging
technology. In the most sophisticated type, a selectable gage length of a single long fiber is queried
to obtain the strain (with picostrain accuracy). This technology could allow a single fiber with the
length of a bridge girder to monitor strain at any location along the girder, or to embed sensors in
manufactured parts that could measure strain later in selected regions using Bragg grating
technology.23 Multiple Bragg gratings can be placed in a single long fiber to obtain numerous
discrete strain readings. These readings can be obtained with greater accuracy than electrical
resistance strain gauges, the readings are immune to electromagnetic and RF interference, and the
sensors are not a spark source, which is a key issue if monitoring is to be done near combustible
materials. Also, these sensors are nonintrusive, extremely lightweight, and have proven to be very
rugged.24

The previous discussion of measuring kinematic quantities has focused on local measurements.
In addition, there are some global sensing technologies that are commercially available. More
mature global sensing technologies include laser Doppler velocometers and acoustic field detectors.
Global sensors can scan a surface of a structure, and in some cases with proper signal processing
they can identify damaged areas. The disadvantages associated with global sensors include fairly
high procurement cost, the need for a visual access to the measured part, and the need to remove the
structure from service to carry out the test. An emerging technology in this area of global sensing is

                                                  

23 M.D. Todd, G.A. Johnson, and B.L. Althouse, “A Novel Bragg Grating Sensor Interrogation System Utilizing a
Scanning Filter, a Mach-Zehnder Interferometer, and a 3 × 3 Coupler,” Measurement Science and Technology, 12 (7),
pp. 771–777, 2001.
24 G.A. Johnson, et al., “Surface Effect Ship Vibro-Impact Monitoring with Distributed Arrays of Fiber Bragg
Gratings,” Proceedings of the 18th International Modal Analysis Conference, San Antonio, TX, February 2000.
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chemical coatings that emit a particular signature when cracked. This technology has already been
demonstrated through the application of pressure-sensitive paints for wind tunnel testing.25

3.2.1.2 Environmental Quantities

If changes in environmental quantities produce changes in the damage-sensitive features
similar to those produced by damage, a measure of the environmental quantity will be necessary to
separate these effects. Such a case will necessitate that environmental quantities such as
temperature, pressure, and moisture content be measured. Note that if damage changes the features
that are in someway orthogonal to the changes produced by environmental effects, then a measure
of the environmental parameters may not be necessary.

3.2.1.3 Operational Quantities

Similar to environmental quantities, operational quantities may also produce changes in
damage-sensitive features and may therefore need to be measured. Operational quantities include
such things as traffic volume for a bridge, mass loading of an off-shore oil platform, or amount of
fuel in an airplane wing.

3.2.2 Define the Sensor Properties

One of the major challenges of defining sensor properties is that these properties need to be
defined a priori and typically cannot be changed easily once a sensor system is in place. These
properties of sensors include bandwidth, sensitivity (dynamic range), number, location, stability,
reliability, power requirements, cost, telemetry, etc. To address this challenge, a significantly
coupled analytical and experimental approach to the sensor system deployment should be used in
contrast to the current ad hoc procedures used for most current damage-detection studies. This
strategy should yield considerable improvements. First, critical failure modes of the system can be
well defined and, to some extent, quantified using high-fidelity numerical simulations before the
sensing system is designed. These high-fidelity numerical simulations can be used to define the
required bandwidth, sensitivity, sensor location, and sensor number. Additional sensing
requirements can also be ascertained if changing operational and environmental conditions are
included in the models so as to determine how these conditions affect the damage detection process.

3.2.2.1 Required Bandwidth

Local response characteristics are required to identify the onset of damage, which tends to
manifest itself in the higher-frequency portions of the response spectrum. Global response
characteristics are required to capture the influence of damage on the system level performance and
to predict future performance. The global system response is typically characterized by the lower-
frequency portion of the response spectrum. Therefore sensors with a high-frequency range tend to
be more sensitive to local response and therefore can detect the onset of damage. This sensitivity
requires a sensor with a large bandwidth. Typically, as the bandwidth goes up, the sensitivity goes
down. Also, it is harder to excite higher-frequency response of a structural system. This difficulty

                                                  

25 R.H. Engler, C. Klein, and O. Trinks, “Pressure Sensitive Paint Systems for Pressure Distribution Measurements in
Wind Tunnels and Turbomachines,” Measurement Science and Technology, 11 (7), pp. 1077–1085, 2000.
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dictates that the excitation needs to be very local as is possible with PZT actuators (see Section
3.2.6). Both local and global response characteristics are required for damage prognosis.

3.2.2.2 Required Sensitivity

Adequate sensitivity and dynamic range is required to separate ambient vibration or low-level
local excitation caused by damage (e.g., cracks opening and closing) from large-amplitude
excitation such as that caused by impact or earthquake loading. Thirty-two bit sensors are able to
resolve this sort of dynamic range, but issues remain concerning the calibration of the sensors over
the entire range of possible inputs.

3.2.2.3 Number of Sensors and Sensor Locations

Two primary considerations when deciding on the number and location of sensors are whether
or not the sensing system should be optimal and how much redundancy is desired. It is critical that
the expected type of damage produces known, observable, and statistically significant effects in
features derived from the measured quantities at the chosen transducer locations. For this reason,
numerical simulations can be used to choose the number of sensors and sensor locations. It is well
known from control theory that the observability of a system depends critically on the location of
the sensors and the desired feature to be extracted. For instance, if one desires to measure the
second resonant frequency of a structure and use this value as a metric for damage, mounting the
sensor on the node of the second mode will doom any frequency-based algorithm to failure. This
problem is partially addressed by the observability theory developed for control algorithms.
However, this theory does not address performance, nor does it address the metric used to determine
damage. The issues associated with integrating observability calculations for local damage and
global behaviors of a system into the optimal sensing design, which has not been addressed in
current damage identification practice, should be examined. Such methods may incorporate genetic
algorithms26 or neural networks with the ability to model the system in detail or the ability to
examine the structure systematically.

Intuitively, sensors should be near expected damaged locations. With MEMS or Smart Dust27

(tiny, wireless sensors) it may be possible to saturate the part with sensors to provide sensing
redundancy, a clear issue for prognostics in civil aerospace applications, and to reduce the need for
an optimal sensing system. As the number of sensors increases, the cost, reliability, and perhaps
power requirements may become significant issues. Traditional sensing emphasizes relatively few,
sophisticated sensors or scanning noncontact sensing. An alternative approach to attaching a sensor
to a structure is the use of a probe. The structure is examined with a probe at numerous locations
sequentially. This sensing approach is common practice in many industries; for example, condition
monitoring of rotating machinery or local acoustic resonance spectroscopy. Clearly a probe requires
a human operator and does not allow periodic data acquisition from a remote location or automatic
data acquisition during a severe event such as an earthquake.

                                                  

26 W.J. Staszewski, K. Worden, R. Wardle, and G.R. Tomlinson, “Fail-safe sensor distributions for impact detection in
composite materials,” Smart Materials and Structures, 9 (3), pp. 298–303, 2000.
27 http://robotics.eecs.berkeley.edu/~pister/SmartDust/
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3.2.3 Calibration and Stability

Most sensors are calibrated at a specialized calibration facility. This type of calibration is
expected to endure but to be supplemented by self-checking and self-calibrating sensors. Calibration
raises several important issues. It is not clear just what forms of calibration are essential, and what
are superfluous. Some measurements are acceptable with 20% error, especially if sensor-to-sensor
comparisons are accurate within a few percent. In other scenarios, absolute accuracies better than
1% are required. The calibration community needs to address these issues, including both precision
and flexibility; for example, how to calibrate a 32-bit sensor over its entire dynamic range, and how
to calibrate a precise sensor versus a coarse sensor.

3.2.4 Sensor Durability

Sensor survival is probably the major issue whose resolution is unclear. Confidence and
robustness in the sensors are prime considerations for prognostics. If this part of the system is
compromised, then the overall confidence in the system performance is undermined. For sensors
implemented for prognostics, several durability considerations emerge:

1. The nontrivial problem of sensor selection for extreme environments; e.g., in service turbine
blades

2. Sensors being less reliable than the part. For example, reliable parts may have failure rates
of 1 in 100,000 over several years time. Sensors are often small, complex assemblies, so
sensors may fail more often than the part to be sensed. Loss of sensor signal then falsely
indicates part failure, not sensor failure

3. Sensors may fail through outright sensor destruction while the part being sensed endures
4. False indications of damage or damage precursors are extremely undesirable. If this occurs

often, the sensor is either overtly or covertly ignored. The biggest cause of aircraft delay is a
failed sensor. Sensor failure might be acceptable if its demise is simultaneous with the part
failure, which would in itself provide an indication of damage

3.2.5 Define Data Sampling Parameters

Sampling issues include deciding how fast to discretize the data and when to take data. These
issues will most likely change depending on the structure and the expected type of damage. If it is
important to characterize the environmental or operational variability, then a lot of samples may
need to be taken initially and data will need to be taken from all the expected environmental and
operational conditions. Once a baseline has been established, data may be obtained either
periodically or only after extreme or anomalous events such as an earthquake or new environmental
conditions not previously experienced.

3.2.6 Define the Data Acquisition/Transmittal/Storage System

Multiple smart sensors produce an abundance of time history data to store and manage.
Another field with this characteristic is satellite imaging, where huge volumes of image data are
standard. Image-data processing may yield some insights valuable for processing smart mechanical
sensor data.
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Sensing, especially with a dense array of smart sensors, interacts with data acquisition. Smart
sensors theoretically make it possible to extract, transmit, and store features, as well as to transmit
raw time histories. Transmitting raw time histories clearly will require much more storage space but
also allows the most flexibility for future data analysis. Continuous data transmission with Smart
Dust could lead to information overload during analysis and storage. With smart, dense sensors the
structure might be instrumented so densely that sensors are everywhere, so wherever damage occurs
there is a nearby sensor.

Near-real-time data transmission for feature extraction and analysis has the potential to enhance
real-time damage detection and to increase the value of testing. Currently, a test setup is often
disassembled prior to data analysis, just to discover that some modification, like a different input
type or level, or another transducer location, is required. Real-time analysis takes more upfront
preparation time and better communications, but provides much more value from the test, because
problems can be corrected during the test. Other issues that need to be addressed are the time
synchronization of a large number of sensors, A-D conversion and onboard memory.

An example of an integrated sensing and processing system is the high-explosives radio
telemetry (HERT)28 system (see Figure 3.2) developed at LANL for weapons flight test monitoring.
The HERT system currently can measure, record, process, and transmit data from 64 fiber optic
sensor channels. A field-programmable gate array is used for local data processing.

Figure 3.2 High-explosives radio telemetry system.

3.2.7 Active Versus Passive Sensing

Most field-deployed structural-health monitoring strategies examine changes in kinematic
quantities such as strain or acceleration to detect and locate damage. These methods typically rely
on the ambient loading environment as an excitation source and, hence, are referred to as passive
sensing systems. The difficulty with using such excitation sources is that they are often
nonstationary. The nonstationary nature of these signals requires robust data normalization
                                                  

28 R.R. Bracht, R.V. Pasquale, and T.L. Petersen, “QAM Multi-Path Characterization due to Ocean Scattering,”
International Telemetering Conference, San Diego, CA, October 2002.
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procedures to be employed in an effort to determine that the change in the kinematic quantity is the
result of damage as opposed to changing operational and environmental conditions. Also, there is
no control over the excitation source, and it may not excite the type of system response useful for
identifying damage at an early stage.

As an alternative, a sensing system can be designed to provide a local excitation tailored to the
damage detection process. Piezoelectric (PZT) materials are frequently being used for such active
sensing systems. Because PZT produces an electrical charge when deformed, PZT patches can be
used as dynamic strain gauges. Conversely, the same PZT patches can also be used as actuators
because a mechanical strain is produced when an electrical field is applied to the patch. This
material can exert predefined excitation forces into the structure. The use of a known and repeatable
input makes it much easier to process the signal for damage detection and prognosis. For instance,
by exciting the structure in an ultrasonic frequency range, the sensing system can focus on
monitoring changes of structural properties with minimum interference from global operational and
environmental variations. These sensor/actuators are inexpensive (less than $5 per PZT patch),
generally require low power (less than 5 V), and are relatively nonintrusive (as shown in Figure
3.3).

Figure 3.3 A PZT sensor/actuator being used to monitor a bolted connection.

Examples of documented successes in active local sensing for damage detection using PZT are
the impedance-based method29 and the Lamb wave-propagation method. 30 The impedance method
monitors the variations in mechanical impedance resulting from damage, and the mechanical
impedance is coupled with the electrical impedance of the PZT sensor/actuator. For this method, the
PZT acts simultaneously as a discrete sensor and actuator. A schematic of the impedance method is
shown in Figure 3.4. For the Lamb wave-propagation method, one PZT is activated as an actuator to
launch elastic waves through the structure, and responses are measured by an array of the other PZT
patches acting as sensors. The structure can be systematically surveyed by sequentially using each
of the PZT patches as an actuator and the remaining PZT patches as sensors. The technique looks
for possible damage by tracking changes in transmission velocity and wave attenuation/reflections.
                                                  

29 G. Park, H. Sohn, C.R. Farrar, and D.J. Inman, “Overview of Piezoelectric Impedance-Based Health Monitoring and
Path Forward,” accepted for publication in The Shock and Vibration Digest, 2003.
30 J.R. Wait, G. Park, H. Sohn, and C.R. Farrar, “Active Sensing System Development for Damage Prognosis,”
Proceedings of 4th International Workshop on Structural Health Monitoring, Stanford, CA, September 2003.
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A composite plate with a PZT sensor layer is shown in Figure 3.5. Both methods operate in the high
frequency range (typically above 30 kHz) where there are measurable changes in structural
responses for even incipient damage associated with crack formation, debonding, delamination, and
loose connections.

Figure 3.4 Schematic of the impedance method.

Figure 3.5 A composite plate with a PZT sensor layer.

Once structural damage has begun and is detected, numerical models can be used to capture the
influence of damage on the system level performance and to predict future performance. This
procedure necessitates the measurement of global system-level response. It may be possible to use
these same PZT patches in both an active and passive mode. When used in the passive mode, the
sensors detect strain resulting from ambient loading conditions and can be used to monitor the
global response of a system. In the active mode, the same sensors can be used to detect and locate
damage on local level as described above.

3.2.8 Sensor Communication

The typical way of instrumenting a system is to run wires between the local sensors and a
centralized data acquisition unit. This approach can impose serious limitations on damage prognosis
since it is highly desirable to have a very large number of sensors. Recent advances in wireless
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communication can alleviate most of these limitations. With wireless technology, the local sensing
and processing units can communicate with a centralized processing unit and each other. Potential
constraints on wireless systems include the maximum range, amount of bandwidth available, energy
requirement, and susceptibility to electromagnetic interference.

3.2.9 Powering the Sensing System

A major consideration in using a dense sensor array is the problem of providing power to the
sensors. This demand leads to the concept of “information as a form of energy.” Deriving
information costs energy. If the only way to provide power is by direct connections, then the need
for wireless protocols is eliminated, as the cabled power link can also be used for the transmission
of data. Hence, the development of micropower generators is a key factor for the development of
the hardware if wireless communication is to be used. A possible solution to the problem of
localized power generation is technologies that enable harvesting ambient energy to power the
instrumentation.31,32 Forms of energy that may be harvested include thermal, vibration, acoustic, and
solar. Although this is new technology, the overriding consideration of reliability still exists, as it
does with any condition monitoring system. With two-way communication capability, the local
sensing and processing units can also turn themselves off-line for energy conservation and they can
be resuscitated when a “wake-up” signal is broadcast.

3.2.10 Data Cleansing

In this section the term “data cleansing” refers to what is done electronically and not the data
cleansing associated with software and data analysis. Data processing includes filtering, amplifying,
and perhaps changing the signal source impedance. Historically, data processing prepared the signal
for recording (on analog magnetic tape) or digitizing and storage (for digital acquisition). More
sophisticated data processing incorporates “smart processing” using a sensor/computer combination
for amplification, A/D conversion, overload detection, transmission of time series data, and feature
selection. A “transformation matrix” preprocesses the raw sensor data into physical quantities of
interest. This matrix is sensor specific and conceptually includes frequency response compensation,
bounds on the sensor error, and automatic removal of out-of-band signals.

3.2.11 Sensor System Definition

Standards for definition of the sensor system are needed. A standard system defines sensor types,
sensor locations, physical parameter sensed, sensor transition matrix (a matrix for translation of
sensor readings to estimated physical parameters) and any other important sensor characteristics.
Extensible Markup Language (XML) and Institute of Electrical & Electronics Engineers (IEEE)
1451.2 are potential templates for a standard sensor system.

Although XML was originally designed to improve the functionality of the Web by providing
more flexible and adaptable information identification, it can also be used to store any kind of
                                                  

31 H. Sodano, E.A. Magliula, G. Park, and D.J. Inman, “Electric Power Generation using Piezoelectric Devices,”
Proceedings of 13th International Conference on Adaptive Structures and Technologies, Berlin, Germany, October 7–9
2002.
32 H. Sodano, G. Park, D.J. Leo, and D.J. Inman, “Use of Piezoelectric Energy Harvesting Devices for Power Storage in
Batteries,” Proceedings of 10th SPIE Conference on Smart Structures and Materials, San Diego, CA, March 2–6, 2003.
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structured information and to enclose or encapsulate information in order to pass it between
different computing systems, which would otherwise be unable to communicate.

IEEE 1451.2 standard defines smart transducer elements that can be treated as network-
independent devices. The IEEE wrote 1451.2 to reduce the complexity of establishing
communications between transducers in a networked environment. The specification addresses
wiring, installation, and what is needed to calibrate a networked sensor. Essentially, the standard
specifies a digital interface that can be used to access what might be called an electronic data sheet
(nonvolatile memory as a transducer electronic data sheet, or TEDS). The specification also defines
how a device reads sensor data and how it sets downstream actuators.

3.3 Summary: Sensing and Data Acquisition

Fundamentally, the key issue for developing a sensor system for damage prognosis is the
ability to capture system response on widely varying length and time scales. Special purpose
sensing is a development of a “smart sensor” philosophy, in which the sensor array is sensitive to
and reports the presence of damage. Current developments in sensor technology indicate that
MEMS devices will soon be integrated with signal processing, data interrogation, and telemetry
capabilities and fabricated on the same silicon substrate. Such “systems on a chip” may significantly
improve the sensing and processing capabilities for prognostic applications by providing a dense-
array of sensors with low cost and low maintenance. Depending on the application, the telemetry
can be accomplished either in a wired or wireless manner. For wireless telemetry, a major concern
is the power source for such systems. Microparasitic generators being developed elsewhere may,
when integrated with the system on a chip, provide the power that will enable a truly self-contained
sensing capability. For in-service prognostics, it is possible that ambient vibration will provide both
the power source and excitation for the structure. However, the authors’ believe that the use of local
actuation with waveforms tailored to the damage-prognosis activity will provide a more robust
damage- detection and damage-monitoring capability.

Current modeling technology is not well integrated with developing sensor technology. In most
cases, without the precise model of a system, it is difficult to know what exactly to measure.
Sensors that directly measure crack properties or corrosion are non-existent. Damage prognosis
requires sensors that measure the physical properties that are more directly related to the most
probable damage scenarios, rather than sensors that measure only strain, strain rate, and
acceleration. In addition, sensors are needed that use multiple materials or sensing elements to get
increased dynamic range, and range of properties. There may be an evolution of sensor types in
damage prognosis, for example, expensive, accurate sophisticated sensors initially, replaced by
cheap special purpose sensor in the longer term, with the special purpose sensors targeting specific
damage types.

At the “front line” of any damage detection or prognosis system is ability to acquire data that
encapsulates any change in system properties that may affect its life or operation. Although simple
sensor configurations with a limited number of sensors will provide an indicator of change to the
global properties, higher-density sensor arrays are required, not only to provide localized
information relating to damage, but also to provide for redundancy. Perhaps the most important
aspect of the sensing system is that it must be more reliable than the system being monitored.
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4. DATA INTERROGATION

The main issue of data interrogation is how to utilize a combination of simulated and empirical
data for damage diagnosis and prognosis. Figure 4.1 shows the interaction of data interrogation with
the other tasks. First, model updating and refinement requires experimental test data to adjust and
validate the numerical model. In this process, data interrogation condenses the massive numerical
data and extracts features from physical measurements for comparison with features extracted from
the numerical data. The data interrogation component of the damage diagnosis process also defines
damage-sensitive features and formulates statistical procedures to determine the existence, location,
and extent of damage. Damage prognosis requires coupling the current system state, determined
from the damage diagnosis process, with estimated future loading information and the predictive
capability of the previously refined model. Future loading can be forecast using various data-driven
prediction modeling techniques. Then, a decision analysis similar to the one in the damage
diagnosis step can be designed to synthesize all this information in an effort to make damage
prognosis. The data interrogation methods needed for this process are data validation, feature
extraction, data normalization, characterization of feature distributions, statistical inference for
decision making, and prediction modeling for future loading estimates. These issues are discussed
more in detail in the following sections.

Figure 4.1 Interaction of data interrogation with the other issues (the major roles of data
interrogation are highlighted in red).

4.1 Data Validation

The first step in data interrogation is to inspect data obtained from sensing devices or numerical
simulations. The data validation step should ensure that the recorded data possesses information
relevant to subsequent analyses. For instance, measured acceleration data can have anomalies
because of electromagnetic interference, missing values because of disrupted RF transmission, or
DC offset caused by drift. This step is closely tied with the sensing and data acquisition issues
discussed in the previous chapter. Data validation techniques can also be conducted to monitor the
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functionality of sensors themselves or the bonding condition of the instruments to the host structure.
For instance, some standard features such as autospectra, frequency response functions, modes, and
response probability density will be available in near real time to analysts and statisticians, allowing
data validation during data acquisition, not after the fact when it is too late to modify test
measurement parameters. Statistical inference techniques such as outlier analysis33 and novelty
detection can be used in this data validation process.

4.2 Feature Extraction

Because new sensing technologies allow structures to be instrumented with large sensor arrays,
and new computation capabilities produce substantial amounts of numerical data, it is essential to
compress these data for subsequent analyses, keeping the information that is relevant to later
analyses. Feature extraction refers to identifying the salient features of data so that it may be used in
subsequent analyses; in the current case, damage diagnosis and prognosis.34 That is, features are a
set of variables derived from the original data set, and they are supposed to capture the relevant
information contained in the original data. Almost all feature extraction procedures inherently
perform some form of data compression. Compressing data into feature vectors of small dimension
is necessary if accurate estimates of the feature’s statistical distribution are to be obtained. The
aspects of a specific problem must be considered in the feature extraction process. Also, nonlinear
features may be necessary for damage detection because the propagation of damage often produces
nonlinear system responses. Data interrogation techniques will assist analysts with various tools
such as linear/nonlinear principle component analysis,35 Fisher’s discriminant,36 and independent
component analysis.37

4.3 Data Normalization

Damage diagnosis is based on the examination of a system’s dynamic response to determine if
the system significantly deviates from an initial baseline condition. In reality, the system is often
subject to changing environmental and operation conditions that affect its dynamic characteristics.
Such variations include changes in loading, boundary conditions, temperature, and moisture. Most
damage diagnosis techniques, however, generally neglect the effects of these changing ambient
conditions. For the development of robust monitoring systems, these natural variations of the
system responses should be explicitly taken into account in order to minimize false positive
indications of true system changes. Autoassociative neural networks38 and a combination of
autoregressive (AR) and autoregressive with exogenous inputs (ARX) models39 have been
employed to address this data normalization issue. Furthermore, time-dependent autoregressive

                                                  

33 V. Barnett and T. Lewis, Outliers in Statistical Data, John Wiley & Sons, Chichester, UK, 1994.
34 C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, Oxford, UK, 1995.
35 M. Kramer, “Nonlinear Principal Component Analysis using Autoassociative Neural Networks,” AIChE Journal, 37,
pp. 233–243, 1991.
36 K. Fukunaga, Statistical Pattern Recognition, Academic Press, San Diego, CA, 1990.
37 A.D. Back and A.S. Weigend, “A First Application of Independent Component Analysis to Extracting Structure from
Stock Returns,” Int. J. on Neural Systems, 8(4), pp. 473–484, 1998.
38 H. Sohn, C.R. Farrar, and K. Worden, “Novelty Detection Under Changing Environmental Conditions” Proceedings
of SPIE’s 8th Annual International Symposium on Smart Structures and Materials, Newport Beach, CA, 2001a.
39 H. Sohn, C.R. Farrar, N.F. Hunter, and K. Worden, “Structural Health Monitoring Using Statistical Pattern
Recognition Techniques” submitted for publication in ASME Journal of Dynamic Systems, Measurement and Control:
Special Issue on Identification of Mechanical Systems, 2001b.
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moving-average (TARMA) models40 and evolutionary spectral analysis 41 have potential to address
this issue. These nonstationary time series and spectral analyses have found wide applications in
modeling of nonstationary process and various naturally occurring phenomena.

4.4 Characterization of Feature Distributions

Because of inherent uncertainties involved in data measurements and physical model
development, the decision-making procedures for the following damage diagnosis and prognosis
should be based on statistical modeling of feature spaces. There are a variety of tools for decision
analysis. A few are hypothesis testing,42 outlier and novelty detection,43,44 sequential probability ratio
tests,45 statistical pro cess control, 46 group clustering, and Bayesian decision theory. 47 These
techniques require parametric or non-parametric characterization of feature distributions or
estimates of statistical properties of the assumed distribution. For example, outlier analysis requires
the estimation of a probability density function for the features corresponding to an undamaged
state of a structure. Furthermore, inherent uncertainties should be addressed in this decision-making
process. For example, how does uncertainty in damage diagnosis propagate through to uncertainty
in damage prognosis? A review of uncertainties in dynamic analysis can be found in Langley48 and
this issue of uncertainty quantification is further discussed in Section 6.

4.5 Statistical Inference for Damage Diagnosis

Statistical inference is concerned with the implementation of the algorithms that analyze the
distribution of extracted features in an effort to make decisions on damage diagnosis and prognosis.
The algorithms used in statistical model development fall into the three general categories: (1)
group classification, (2) regression analysis, and (3) outlier detection. The appropriate algorithm to
use will depend on the ability to perform supervised or unsupervised learning. Here, supervised
learning refers to the case where examples of data from damaged and undamaged structures are
available. Unsupervised learning refers to the case where data are only available from the
undamaged structure.34 The success of decision making can be assessed by (1) overall
misclassification rate (false positive or negative indications of damage or system failure), (2)
receiver operating characteristic49 curves (ROC), and (3) confidence intervals on prediction.

                                                  

40 K.A. Petsounis and S.D. Fassois, “Non-Stationary Functional Series TARMA Vibration Modeling and Analysis in a
Planar Manipulator,” Journal of Sound and Vibration, 231(5), pp. 1355–1376, 2000.
41 S. Adak, “Time Dependent Spectral Analysis of Non-stationary Time Series,” Journal of the American Statistical
Association, 93, pp. 1488–1501, 1998.
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Vibration, 229 (3), pp. 647–667, 2000.
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49 J.P. Egan, Signal Detection Theory and ROC Analysis, Academic Press, New York, NY, 1975.
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One of the main issues in this decision-making procedure is to establish decision threshold
values. In particular, extreme value statistics50 can be employed to establish decision boundaries to
minimize false positive and negative indications of damage. Statistical inference is often based on
the assumption that the underlying distribution of data is Gaussian. However, the assumption of
normality imposes potentially misleading behavior on the extreme values of the data; namely, those
points in the tails of the distribution (illustrated in Figure 4.2). As the problem of damage
identification specifically focuses attention on these tails, the assumption of normality is likely to
lead any analyses astray. An alternative approach based on Extreme Value Statistics is developed to
specifically model behavior in the tails of the distribution of interest. Furthermore, the development
of statistical models should vary depending on the targeted damage scenarios. For example, it will
be necessary to track trends in feature spaces for the detection of slowly accumulating deterioration
over long time periods as opposed to sudden anomalies in features resulting from a discrete event.
Uncertainties and propagation of uncertainties also need to be taken into account in the
establishment of decision criteria.

Figure 4.2 The increasing false-positive and false-negative outlier detection if confidence limits are
based on a normality assumption when underlying feature has a Gamma distribution.
Extreme value statistics based on Gumbel distribution accurately represent the true
thresholds.

                                                  

50 K. Worden, D.W. Allen, H. Sohn, and C.R. Farrar, “Extreme value statistics for damage detection in mechanical
structures,” Los Alamos National Laboratory report LA-13903-MS, August 2002.
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4.6 Prediction Modeling for Future Loading Estimates

A successful damage prognosis requires the measurements of the current system state, and the
prediction of the system deterioration when subjected to future loading. Based on the analysis of
previous loading histories, future loading can be forecast using various data-driven prediction
modeling techniques. For example, surrogate modeling such as state space representation51 and
multivariate ARMA models52 can be employed to track previous loading and predict future loading
for this purpose. Then, a decision analysis similar to the one in damage diagnosis step should be
designed synthesizing all these information. Estimating remaining useful service life is a wide-open
area for future research because little work is being done in this prognosis area. It might be possible
to cast the damage-prognosis problem in the context of risk analysis. In a risk analysis, the failure
state of a system is represented by a function of the response known as the safety margin. Then, the
probability of failure is the integral of the response space over the unsafe region bounded by the
safety margin. The first-order reliability method (FORM) approximates this integral by seeking the
shortest distance from the origin of the response space to the surface of the safety margin. Various
refinements of the FORM exist, including the approximation of the safety margin surface to a
quadratic surface (using the second-order reliability method, or SORM) and the use of multiple
failure-surfaces to represent different failure mechanisms.53 Unlike damage diagnosis, it is difficult
to obtain experimental data near the failure of a system. Therefore, the prognosis aspect of this
problem most likely will be cast in an unsupervised learning mode.

4.7 Summary

The purpose of data interrogation is to extract pertinent features from numerically generated
and experimentally measured data and to build statistical inference models for damage diagnosis
and prognosis. The feature extraction procedure involves identifying salient features of data that can
be used for numerical model updating, damage detection, or damage prognosis. Condensation of
data, which reduces the dimensionality of the feature space, is another important aspect of data
interrogation. This data compression is beneficial for reliable statistical modeling of the feature
space. Once a statistical model is built, it can be used for subsequent statistical inference and
decision making. Another major role of data interrogation is to address the issue of data
normalization, which can severely hinder the deployment of a robust monitoring system on real-
world applications. The authors strongly believe that this data normalization issue needs to be
explicitly taken into account to minimize false positive indications of damage. Furthermore,
decision-making procedures in damage detection and prognosis should be based on rigorous
statistical modeling in the face of measurement, loading, and modeling uncertainties. Currently,
little work has been done in the area of future loading estimation, although the successful
deployment of a damage-prognosis solution absolutely depends on the prediction of future loading
characteristics and as such further research on this topic is warranted.
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5. MODELING AND SIMULATION

The purpose of this section is to present the definitions, issues, and research needs relating to
modeling and simulation for damage prognosis. The discussion is restricted to structural damage
prognosis where a structure is defined as a mechanical system whose primary purpose is to carry
loads as opposed to computer operating system failure or failure of electronic circuit boards.

The primary objective of structural health monitoring is to determine the current condition of a
structure. One critical aspect of SHM is to be able to assess not only the current state of the system,
but also to assess its operational and environmental loading history. Also, knowledge of the
historical evolution of the damage states may be as important as the knowledge of the current
system state. Beyond this first step, structural prognosis aims to assess the ability of a system to
carry out it future intended function. Modeling and simulation are the tools by which predictions are
made. Predicting the remaining useful life of a structure or the ability of a system to carry out its
intended function must rely on a combination of numerical models and physical observations when
direct service-life experimentation of the fully integrated system is not an option.

5.1 Decisions to Support

It is generally agreed that damage diagnosis and damage prognosis are application-dependent
technologies. Therefore, success will depend to a large extent on the ability to define the damage
scenario, how it occurs and its potential modes of propagation. Examples of damage mechanisms
that may require the development of appropriate models are creep, fatigue, corrosion, wear, brittle
and ductile fracture, buckling, and embrittlement. It is not realistic to believe that a single model
will, in the foreseeable future, be able to capture all these different damage mechanisms. Therefore,
research and development should first attempt to demonstrate the damage-prognosis technology and
assess its limitations for a particular application and a particular damage mode.

Once the damage of concern has been defined, the next step is the assessment of how that
damage initiates and propagates. Models used for this portion of the study will differ depending on
what causes damage to appear and the type of damage that is present. In almost all cases damage is
related to exceeding some strength, deformation or stability criteria. With these general failure
mechanisms in mind, three main categories of damage evolution will be described in terms of the
types of loading that occur:

1. Incremental damage accumulation: High-cycle fatigue (HCF) is an example of
incremental damage accumulation mechanism where cracks form from initial flaws and then
open and close as the system goes through its load cycles. Because plastic deformation
accumulates, the crack reaches an equilibrium state before eventually propagating further
through the material. This mode of propagation relates to the loading experienced by the
structure. If the damage scenario and its mode of propagation are well defined, numerical
models and diagnosis systems can be developed and tailored for a particular application that
can predict the damage evolution and periodically update estimates of the current system state.

2. Scheduled discrete damage accumulation: Damage can be the result of scheduled discrete
events such as aircraft landings or missile stage separations. This category must be kept
separate from the next one because events that are planned will typically be easier to control
and monitor than unexpected events. During the times between such events, for example, it
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might be possible to implement damage prevention and countermeasures with little interference
to the system’s intended use.

3. Unscheduled discrete damage accumulation: Typical unscheduled discrete events would
include natural loading and phenomena hazards such as earthquakes, small arms fire on aircraft
structures, and foreign object intrusion in turbine blades. The occurrence of such events and the
resulting loads applied to the system are difficult to measure or predict. The consequences
might range from insignificant (the mechanical response remains elastic), to moderate (a small
crack is initiated) to severe (total failure). Other propagation modes can be initiated as the result
of discrete events. This is, for example, the case of an impact that initiates a series of small
cracks, some of which will then start propagating and coalescing in an incremental fashion or
as further discrete events are encountered. An illustration of these three categories of damage is
shown in Figure 5.1.

Figure 5.1 Illustration of three categories of damage. From left to right, (a) incremental damage
accumulation in rotating machinery, (b) scheduled discrete damage accumulation
resulting from an F-14 Tomcat landing on a carrier, and (c) unscheduled discrete
damage accumulation resulting from a collision of the USS Denver.

Figure 5.2 illustrates the concept that appropriate models generally have to be developed
depending on which damage scenario and propagation mechanism is considered. Other dimensions
may have to be considered given the targeted application. In particular, models might have to be
somewhat purpose-specific where the implementation of a particular model might depend on the
decisions that the simulations are required to support.

After defining the damage scenario, propagation mode, and expected occurrence type, the
numerical models developed must satisfy specific requirements. First, past experience must be
translated into useful modeling rules as much as possible. This task may be achieved by learning the
state-of-the-art technology available for a particular application or incorporating existing databases
or expert opinion. Second, the purpose of the model must be clearly identified. This identification
includes defining the required model output, defining the confidence level that is required to support
a particular decision and, possibly, defining which features of the system’s numerically simulated
response can be observed experimentally to complement and validate numerical predictions.
Finally, techniques must be developed and implemented to help manage the evolution of models.
Examples of configuration management include tracking which numerical models are implemented,
tracking which algorithms are used, tracking how the models evolve such that they can capture
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system evolution (mix of old, retrofitted, and new parts) and tracing the status of specific hardware
changes. These requirements are captured in the following six questions:

1. What is the state of the art of the problem and what can be learned from it?
2. What decisions will the model support?
3. What specific response features should be extracted from the numerical data?
4. What level of confidence is required for the simulation output?
5. What response quantities should be experimentally measured?
6. How should the evolution of the model be managed?

Figure 5.2 Matrix of damage model development.

5.2 Modeling and Simulation

In this section, model requirements for damage prognosis are discussed. We start by discussing
in Section 5.2.1 the various types of models and some of their characteristics and requirements.
Issues such as the input data needed to develop and maintain the models and the integration of
modeling and sensing are discussed in Sections 5.2.2 and 5.2.3.

5.2.1 Types of Models

A model is defined here in a broad sense as the relationship between output features denoted by
the symbol y and a set of input parameters denoted by the symbol p. This relationship can be written
as y  = M(p). Output features represent any combination of averaged, integral quantities (for
example, the mean von Mises stress calculated over the entire mesh), scalar responses (such as the
length of a crack or its energy dissipation rate), time-series (for example, the history of acceleration
at specific locations), statistical information or discrete variables (such as a flag equal to either “go”
or “abort” that would answer a specific question). The input parameters include physical
parameters, numerical parameters and measurements. Inputs such as environmental variables and
loads can be considered as part of the model or they can be parameterized and included in the
definition of p. The only requirement when defining the input is to make sure that all parameters
whose variations are likely to influence the outcome of the model are included. This requirement
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ties into the notions of sensitivity, variability and uncertainty quantification as explained below (see
Section 5.3).

Damage-prognosis solutions are likely to rely heavily on numerical modeling and simulation
because damage and its evolution cannot always be measured directly. Even if the presence and
severity of structural damage can be inferred from physical observation, the effect that damage
might have on the future performance of the system is generally assessed though simulation. The
models required for damage prognosis, whether they are derived from a mathematical theory,
experimentation, empirical observations or expert knowledge, will belong to different categories
depending on what they are supposed to represent, their purpose and the decisions they support. The
following model types have been identified:

1. Physically based models: Physically based models attempt to mathematically describe the
fundamental mechanisms of a phenomenon with as little approximation as possible. This class of
models is often referred to as “first principle” modeling, as opposed to models that are developed
from macroscopic conservation laws, empirical observation, or expert knowledge. Physically based
models must provide a resolution in terms of fundamental mechanics, spatial discretization,
temporal discretization, and energy bandwidth that fully describes the damage mechanism of
interest. To achieve the requisite predicative capability for damage prognosis, the integration of
information from models capturing the physical phenomena of interest on various length scales will
be necessary. The integration of models that predict different physical phenomena may also be
necessary to achieve a damage-prognosis capability. Alternatively, the simulations will have to be
carried out on large-scale computing platforms, such as those being developed as part of the
Department of Energy’s Advanced Simulation and Computing Program (ASCI),54 with sufficient
capability to run codes to capture multiscale physics.

Examples of physics-based and surrogate models are shown in Figures 5.3 and 5.4. A detail of
the computational grid for a finite element analysis of a pressure vessel is shown in Figure 5.3. The
surrogate model shown in Figure 5.4 is a multivariate statistical metamodel developed to replace a
finite element simulation. The model predicts peak acceleration of a test item as a function of the
input parameters. Because the polynomial’s coefficients are characterized by statistical
distributions, the model can be sampled to produce the family of response surfaces shown in
Figure 5.4.
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Figure 5.3 The flanged portal of a pressure vessel and a detail of the computational grid of a finite
element model of the vessel.

Figure 5.4 Multivariate statistical metamodel.

2. Surrogate models: Surrogate models are also referred to as “reduced-order,” “fast-running
models,” or “metamodels” in some scientific communities. The purpose of a surrogate model is to
replace a more complex physically based model and to improve computational efficiency for
parametric study, sensitivity analysis, and numerical optimization. Surrogate models are not derived
from first principles, nor should they be based on complicated computational procedures. They are
generally obtained after condensing information or fitting predefined and parameterized functional
relationships to data sets. Surrogate models can be obtained in ways such as fitting a polynomial
function y = a0+b1x+c2x

2 through a distribution of data points {xk; yk} in an effort to define the
functional relationship between x and y. Some of the more recent and more sophisticated techniques
employed in engineering include, but are not restricted to, neural networks, support vector machines
and statistically accurate models capable of predicting an output feature together with its probability
information. Surrogate models may be derived from computational models or observed data.
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However, the accuracy of these models is a direct function of the data used to develop the model
and there is no guarantee that the surrogate model will extrapolate beyond the data used in its
development. The authors envision that for damage prognosis, surrogate models will provide a
bridge between detailed physics-based models and measured system response data. The
computational efficiency of surrogate models will allow for local data processing capabilities,
through programmable digital signal processing (DSP) chips that can be integrated directly with the
sensing system. Coupling the surrogate model with the sensing system will allow for near-real-time
system assessment based on the measured system response and previous physically based numerical
simulations whose information is captured in the surrogate model.

Surrogate models must be “trained,” to identify their unknown parameters. Their quality must
also be evaluated independently from the training step. Because analyzing a detailed finite element
model at every combination of input variables is computationally prohibitive, training is generally
based on a subset of carefully selected runs. Design of experiments (DoE)55 techniques can be used
to explore large design spaces and to select a judicious subset of finite element analyses. Surrogate
modeling and effect screening can be performed using DoE because identifying the effects and
interactions that capture a particular input-output relationship controls the functional form of the
surrogate model.

3. Coupled models: The key to success when modeling and analyzing complex phenomena is,
to a great extent, in the formulation of a multidisciplinary approach to the problem. As mentioned
previously, damage prognosis will require a high degree of integration and coupling between
various models. The coupled models might represent several scales of a phenomenon as, for
example, when macroscopic mechanical models are coupled with a microscopic and probabilistic
description of a material and, possibly, with a nanoscale representation of atomic interactions.
Models might also have to be coupled because of interaction between two or more physical
phenomena. An example of this coupling is provided by the field of aeroelasticity that specializes in
studying the interaction between fluid-dynamic equations and solid mechanics equations.

4. Knowledge-based models: The fourth class of models considered does not, as the previous
ones do, rely on formal descriptions of input-output relationships, partial differential equations or
empirical descriptions of data sets. Knowledge-based models are developed from gathered data or
expert opinion and analyzed using tools such as neural networks, fuzzy logic, and case-based
reasoning. The primary objective of knowledge-based modeling is to capture heuristic
understanding and codify it. An example where case-based reasoning is being applied with some
success is the monitoring of engine breakdown.56 Although automobiles are theoretically
replications of the same system, unit-to-unit variability during the manufacturing, assembling
processes, and during the operating life of each individual system makes it impossible to rely on a
single model for diagnostics. Valuable information can be gained from recording the causes and
consequences of breakdowns as they occur and inferring reasoning rules from the observed data.
Means must be found to make formal and knowledge-based models better interact with each other.
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Figure 5.5 illustrates the coupling between different physics-based models. Each is developed
to model physical and mechanical phenomena occurring in their own time scale, spatial resolution,
and energy bandwidth. Capturing the evolution of damage from small time and spatial scales to
system-level failure may also require the ability to manage the evolution and coupling of different
models.

Figure 5.5 Illustration of the required coupling between multiscale, multiphysics models.

5.2.2 Input Data

Care must be taken when specifying the parameters and inputs required to adequately define a
simulation and the subsequent solution to a problem. These parameters and inputs include initial
conditions, boundary conditions, problem domain, material properties, forcing functions, and prior
probability information. Parameters and inputs must be defined adequately no matter what types of
models are used (physically-based, surrogate or knowledge-based models).

Complex, physics-based models and surrogate models generally depend on input parameters to
which a clear physical meaning cannot be attributed. Other input parameters are often encountered
that cannot be measured directly and whose values are associated with extreme uncertainty. In both
cases, dedicated calibration experiments are required to infer the parameter values that are most
consistent with the physical observation.
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Structural prognosis relies on the assessment of the system’s current state and the estimation of
future loading to make predictions such as remaining useful life, safety margin, and future
performance characteristics. Estimating future loading scenarios is a difficult problem. Current
loads, future loads, and their probability information can be inferred from direct measurement to
some extent. Even so, the loads estimated are likely to vary significantly from their nominal values.
During prognosis, the uncertainty associated with input loading must be propagated through
forward simulations to provide confidence bounds around the predicted model output.

5.2.3 Integration of Modeling and Sensing

The importance of integrating numerical modeling and sensing is recognized. Two levels of
interaction are possible that would contribute to improving the analysis capability. First, numerical
models can be used to specify what one would ideally like to measure. Of course, this specification
will depend on the damage scenario considered, the damage propagation mode, and the intended
purpose of the numerical model. A direct measure of damage will always be preferred to an indirect
physical observation because it can be easily quantified and compared to model output. It should
also be more reliable than a value inferred from indirect measurements. Hence, models and
numerical simulations can be used to explicitly define the measurement required for each damage
scenario and propagation mode. For example, current models for analyzing creep damage are based
on predicting creep strains. Are sensors available that would provide a direct measure of creep
strain? Can they be developed?

Beyond this first step, numerical simulations can also be used to determine the specifications of
a measurement system given specific deployment and damage detection constraints. High-fidelity
simulations can be analyzed for predicting the effect of crack damage for a particular application,
determining the minimum crack length that the measurement system should be able to detect,
optimizing the location of actuators and sensors, and finally, determining the measurement system’s
specifications in terms of sensitivity, bandwidth, and frequency content.

The second potential level of integration between modeling and sensing resides in the
integration of software and hardware components. Once the actuation and sensing capability has
been selected, their locations have been optimized and the specifications of the data acquisition
system have been met, it may be advantageous to integrate model output and sensing information as
much as possible. For example, surrogate models can be programmed on local DSP chips and their
predictions can be compared to sensor output in real time. One obvious benefit would be to
minimize the amount of communication by integrating the analysis capability with real-time
sensing. Figure 5.6 shows a comparison of predictions of a polynomial response surface and
features extracted from experimental measurements. In an integrated approach, features can be
extracted from sensing information and numerical simulation. Test-analysis comparison and
parameter calibration can then be performed locally, which would greatly increase the efficiency of
damage detection.
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Figure 5.6 Integration of measurements and predictions. The vertical axis, ET, is the first temporal
moment.

5.3. Uncertainty Analysis

Uncertainty in models and computer simulations generally arises from the combination of
environmental variability, parametric uncertainty, and modeling lack of knowledge. Section 6
discusses these categories and overviews the theories available to represent uncertainty. A brief
discussion of uncertainty is provided here to emphasize implications in terms of reliability
assessment and decision-making capabilities.

Environmental variability includes the uncertainty associated with environmental variables
such as temperature and humidity. For the purpose of this discussion, it also includes measurement
errors, data processing errors and uncertainty associated with the description of loads and boundary
conditions. Most environmental variability can be dealt with as parametric uncertainty. Uncertainty
that cannot be modeled easily is generally accounted for by perturbing the available information
with a random process.

Parametric variability is defined as the uncertainty associated with the input parameters of a
particular model. It is dealt with by sampling each input parameter’s probability density function or
intervals of possible values. Enough analyses must be performed to provide an adequate
representation of variations in the input parameter space. Uncertainty introduced through
manufacturing and assembling processes can be considered under this category if it can be properly
modeled.

Modeling uncertainty or lack of knowledge refers to the uncertainty associated with the
functional form of the models implemented. Examples are inadequate model forms, unknown
interaction between state variables or physical phenomena, and model order truncation. Modeling
consists of translating observations or reasoning into formal rules and equations through the
formulation of hypotheses. To assess the confidence in simulation results, the uncertainty associated
with each hypothesis and modeling assumption must be assessed and propagated through the
simulation.
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Because decisions about the future performance of the structure can involve various sources of
uncertainty, the decision-making procedure should be thought of in terms of an assessment of
system reliability. Reliability analysis estimates the probability of failure in the context of
uncertainty. Failure refers to, for example, catastrophic failure, or not meeting a performance
requirement, or exceeding an allowable crack size. A numerical integration procedure is required to
propagate the sources of variability, uncertainty and lack of knowledge through the numerical
simulation and estimate the probability that the failure criterion is met or not. The scenario of
modeling uncertainty based on probability has been extensively studied, and sampling-based as well
as approximation-based techniques are available to estimate the probability of failure. On the other
hand, few techniques are available to deal with nonprobabilistic uncertainty, make decisions that
maximize the robustness to uncertainty, and account for modeling lack of knowledge.

Uncertainty analysis for damage prognosis is further discussed in Section 6. The formulation of
reliability problems and decision making for damage prognosis is further discussed in Section 7.

5.4 Verification and Validation

Replacing physical observations with computer modeling requires that the models and
simulations adequately match the system’s response. If simulations are used to support decisions in
life-threatening or mission-critical situations, the computational models on which they rely must be
validated and their degree of predictability must be assessed. This study will conform to the U.S.
Department of Energy’s definition of validation, which makes a clear distinction between
verification and validation. Here, model verification addresses the issue of assessing that the
equations implemented are being solved correctly. In contrast, model validation is concerned with
estimating that the equations correctly represent reality.

5.4.1 Verification

Before a decision can be confidently based on numerical results, it must be verified that the
computer hardware, computational models, and numerical simulations are implemented correctly.
Model verification addresses issues associated to programming bugs, communication errors, human
interaction errors, discretization errors, computational errors, and the convergence of numerical
solvers. In structural dynamics, for example, finite element-based simulations must ensure that
discretization is adequate both spatially and temporally and that the energy content is captured over
an adequate bandwidth. Figure 5.7 shows a comparison of predictions obtained with several
computational grids to check that the numerical solutions asymptotically converge. It had been
demonstrated that a posteriori and interpolation-based error estimators can be used to efficiently
demonstrate mesh convergence for elliptic problems. However, such indicators can not typically be
applied to other types of equations (parabolic, hyperbolic) with arbitrarily complex geometries.57

It may be argued that guaranteeing a 100% error-free simulation using a 100% bug-free code is
not realistic. Nevertheless, a statistical treatment can assess the confidence in code output or
measurement system output. Ideally, each model should be developed with its own verification plan
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to ensure traceability (adequately documenting changes), and to guarantee that once linked with
other models errors are not accumulated or transmitted to other parts of the simulation.

Figure 5.7 Study of the convergence of a computational grid.

5.4.2 Validation

The definition of model validation is generally centered about the question: “Are the
appropriate equations being solved?” Answering this question necessitates some sort of comparison
between physical measurements and prediction output. However, it is emphasized that a model
should never be considered validated if the validation experiment establishes only that the model
output matches experimental results. Techniques such as finite element model updating, parameter
identification and parameter “tuning” are useful tools for model validation and they will be
collectively referred to as calibration tools.58 Nevertheless, by no means does a calibration
experiment constitute a validation experiment. Generally, calibration adjusts some of the model’s
input parameters through one of many inverse problem-solving techniques to make the numerical
predictions consistent with physical observations. Model validation, on the other hand, aims to
assess the accuracy of the model’s predictions throughout the operational space.

The relationship among modeling, variability, and uncertainty has already been discussed in
Section 5.3. Because it is unrealistic to believe that a model, no matter how sophisticated, will ever
represent reality perfectly, the statistical analysis of modeling uncertainty should be systematically
included. Uncertainty analysis during model development and validation helps to assess regions of
the design space that are predicted with acceptable accuracy and those that would require further
refinement. Similarly, all potential sources of variability (e.g., environmental changes,
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manufacturing tolerances, and assembling variability) should be represented to help estimate the
probability information contained in the model output.

This supposition implies that physical testing is not needed so much for the purpose of
calibration or verification, as is usually the case in test-analysis correlation studies, but for assessing
the statistical adequacy between model predictions and system response over as much of the design
space as possible.

Clearly, model validation requires well-defined validation experiments. The validation
experiments should provide physical observations over the entire operational range of the system.
The experiments must also be designed to capture potential sources of variability and isolate the
separable physics before consideration of more complex interactions. The statistical design of
experiments, together with numerical simulation, can be useful for planning an adequate matrix of
physical tests that will then feed the validation study. In Figure 5.8, the predictive accuracy of a
high-rate, high-temperature plasticity model is assessed over a domain of potential temperatures and
strain rates. Validation experiments are performed at several temperatures and strain rates to
calibrate the parameters of the numerical model. A metamodel of predictive accuracy is developed
to estimate the prediction error. It is very likely that model validation will have to be carried out at
each level of modeling. Probable scales of validated models will represent basic, separable physics;
elementary components; subassemblies; and, if possible, the full system.

Figure 5.8 Assessment of predictive accuracy of a constitutive model.

Typical outcomes of a validation experiments include assessing the accuracy of the constitutive
equations, the functional form of the partial differential equations, and the conceptual form of the
model (especially, in the case of surrogate modeling). Another important issue is that the models
required for analyzing the response of a system to real operating conditions might be significantly
different from the models developed for non-operating conditions or laboratory experiments. If the
models and simulations are validated using laboratory validation experiments, the question remains
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as to how the predictive accuracy for the real system can be assessed. Other elements of model
validation include the following:

1. Feature extraction: In the context of damage prognosis, features are defined as any
quantities extracted from physical measurements or numerical predictions that support the
assessment of the current health of the system. Generally, low-dimensionality features are
sought to provide an efficient compression or reduction of large data sets and to allow the
subsequent statistical analysis. Of course, the features selected must also reflect the purpose
intended for the model. Conventional features in structural health monitoring are peak
values in time histories, mode shapes, or resonant frequencies. However, these metrics are
not appropriate indicators of damage in complicated systems characterized by nonlinear,
nonstationary responses and a high degree of variability. Response characterization and
feature extraction are important components of damage diagnosis and prognosis.

2. Correlation metrics: During a calibration or validation experiment, a correlation metric is
used to compare the distances between features derived from physical measurements and
numerical simulations. Conventionally, least-squares metrics, maximum likelihood, or
Bayesian metrics are defined for formulating inverse problems as optimization problems.
As the importance of building statistically accurate models is recognized, other correlation
metrics should be investigated to capture the consistency between model predictions and
reality. Capturing this consistency ties directly into the statistical activities of hypothesis
testing and group classification. Statistical tests that have been proposed as correlation
metrics include, but are not restricted to, the Chernov entropy,59 the Kullback-Leibner
entropy,60 or the Mahanalobis test 37 that simplifies into a conventional Bayesian posterior
distribution when probability information is normally distributed.

3. Error localization: One of the objectives of calibration and validation experiments is to
identify the areas of the model that are responsible for the discrepancies between physical
observations and model predictions. In a calibration experiment, the discrepancy is
attributed to erroneous input parameters. Error sources might also include erroneous initial
and boundary conditions, incorrect geometry description, inadequate discretization and
inadequate model form. Some of these error sources can be addressed with an appropriate
verification plan (that would, for example, be the case of discretization errors) while others
are clearly validation issues. Generally, error sources are assumed a priori and an
appropriate correction strategy is implemented. For example, a posteriori error estimators
and mesh adaptivity address the problem of discretization convergence while finite-element
model updating addresses the problem of parameter calibration. Currently, there is little
published research that attempts to either classify error sources or develop general-purpose
error localization strategies.

4. Calibration: Calibration has been recognized as an important tool for model verification and
validation. Calibration applies to those input parameters whose values can be inferred from
physical observation. In general, parametric calibration is formulated as an optimization
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problem, although other approaches via adjoint modeling61,62 or two-point boundary value
problems63 sometimes appear more relevant. In structural dynamics, finite-element model
updating64 is an example of a calibration technique that has been applied with some success
to structural health monitoring. Issues in calibration include adopting an appropriate
framework through the choice of correlation metrics, numerical optimization efficiency and
convergence, local versus global search techniques, and the propagation of uncertainty and
probability information. Figure 5.9 shows an example of a test-analysis comparison and the
improved result obtained through parametric calibration.

Figure 5.9 Illustration of test-analysis comparison and parametric calibration. The stars correspond
to experimental data points. The vertical axis, ET, is the first temporal moment. Left:
Test-analysis comparison before parameter calibration. Right: Test-analysis comparison
after calibrating the parameters of the metamodel.

5. Sensitivity: Sensitivity information is very valuable whenever optimization problems are
solved or design questions must be answered. Sensitivity can be defined as the local
gradient information obtained from an analytical formulation, adjoint differentiation, or
numeric computation via finite-difference schemes. Here, sensitivity also refers to the
broader notion of statistical variance, which is an integral measure of influence averaged
over the entire design space. Analysis of variance techniques can also provide important
information regarding which input parameters are responsible for the statistical variance of
an output feature. Obviously, convergence and computational resources can impose serious
limitations on the amount of sensitivity information available. Nevertheless, validated
models should be required to represent the output features of interest adequately together
with their statistical distribution and sensitivity information. Figure 5.10 shows results from
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a main effect screening analysis of a large-size finite element model to 12 parameters.
These 12 input parameters are screened to analyze which ones produce the greatest change
in several response features over a range of possible values. A design-of-computer-
experiment is used to determine the necessary finite element simulation runs. Results are
analyzed using a Bayesian screening technique. Large vertical bars indicate input
parameters that strongly influence the values of the output features throughout the
operational domain.

Figure 5.10 Results of a main effect screening experiment.

5.5 Hardware and Data Management

In this section damage prognosis issues related to hardware, software and data management
will be discussed. It is believed that some of the problems generated by the deployment of large
numbers of actuators and sensors can be more efficiently resolved if hardware integration is taken
into account early in the process of designing a damage-prognosis system. Similarly, the vast
amounts of data generated by massive number of sensors and numerical models require specific
data handling procedures. Integration of hardware and software, process streamlining, and
modularity are some of the aspects addressed below.

5.5.1 Architectures

Large-scale computational resources and high-fidelity modeling are increasingly available. An
example is the U.S. Department of Energy’s ASCI program.54 Figure 5.11 shows the Department of
Energy’s ASCI Q massively parallel platform at Los Alamos National Laboratory. This machine is
capable of 20 teraops (20 × 10+12 floating-point operations per second). Even without access to
massively parallel architectures, computational power and modeling capability have increased by
several orders of magnitude in compared to just a decade ago. Lower costs for memory and disk
space, massive integration of transistors on computer chips, and high-speed networking are mainly
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responsible for this continuing improvement. Many of these achievements are motivated by new
technologies and the consumer market place. Examples are high-speed Internet, voice streaming,
video games, cellular phone applications and, soon to come, video streaming. These are examples
of technologies that are readily available, for the most part, and that can have a significant impact
on the deployment of damage-prognosis systems.

Figure 5.11 The Department of Energy’s ASCI Q computer.

Further research and development is also needed in computer science and software engineering
to develop robust and general-purpose production codes capable of analyzing very large practical
problems based on massively parallel architectures.

On the other end of the spectrum, specialized hardware must be developed for specific
applications. Great efficiency can be achieved by tailoring both hardware and data processing to the
application of interest. The technology that has the potential to impact damage prognosis the most is
the development of micro-electro-mechanical systems (MEMS), as discussed in Section 3. Among
all possible chips that could potentially be developed for damage prognosis, specialized chips
dedicated to finite element analysis, impedance models, and advanced signal processing techniques
would be the most useful.

5.5.2 Data Handling

Massive instrumentation and high-fidelity numerical simulations tend to generate vast amounts
of numerical data that must be accessed and processed. Here, data handling collectively refers to
communication, security, storage, compression, visualization, human interaction, and archiving of
the data. Data handling issues are classified in four groups:

1. Communication: The conventional approach to monitoring that consists of running wires
between the local sensors and a centralized data acquisition unit can impose serious
limitations on damage prognosis, a corner stone of which is the deployment of massive
instrumentation. Recent advances in wireless communication can alleviate most of these
limitations. With wireless technology, the local sensing and processing units can
communicate with a centralized processing unit and with each other. With two-way
communication capability, the local sensing and processing units can also take themselves
off-line to conserve energy, and they can be resuscitated when a “wake-up” signal is
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broadcast. Potential constraints are the maximum range, amount of bandwidth available,
energy requirement, and susceptibility to electromagnetic interference.

2. Security: Beyond the health monitoring of civil engineering systems, potential applications
for damage prognosis include critical machinery and equipment in industrial facilities and
military systems. Broadcasting information about such systems may betray innovative
production techniques, competitive advantages, or national security concerns. It is therefore
very unlikely that damage-prognosis systems will ever be deployed if sensitive information
is prone to unauthorized interception. Sensitive components must be identified as such and
protected by adequate encryption techniques. The security procedures implemented must
also be able to adapt to evolving threats.

3. Visualization: Understanding what data or measurements tell us can be made quite difficult
by an inappropriate presentation of the results, especially when large amounts of data are
presented. Too much information can hide what is really important to know about the
system and impede decision making. The interaction between humans and computers can
be tailored for maximum efficiency given a particular application and the corresponding
measurement systems and computer simulations. Current developments of multi-media
technology offer many possibilities that should be used. Depending on the environment
considered (computer laboratory, prototyping, deployment on the field, etc.), an efficient
presentation of results could include high-fidelity graphics, three-dimensional (3-D)
immersion chambers, simple visual messages such as a red-yellow-green light, or vocal
messages. Obviously, greater efficiency can also be achieved through feature extraction
techniques.

4. Accessibility: Large data sets generally require sophisticated or innovative storage
capabilities not just to physically store the information but also to access it efficiently.
Storage and accessibility are therefore important components of damage prognosis.
Compression algorithms will most likely be required to improve the efficiency with which
large data sets are stored and accessed. Law enforcement authorities’ storage of large
fingerprint databases is an example where, through wavelet-based image compression, over
99% of the information can be retrieved using a fraction of the bits of the original image.65

This data compression ties directly into the pattern recognition and feature extraction
technology that has already been mentioned. Archiving as much as possible of the data
collected and generated is also important. Analysts must be allowed to revisit past data sets
for further, in-depth analysis if an abnormality is detected in the future. It is also likely that
the preferred features will evolve throughout the life of the structural system and new
features cannot be analyzed if the raw data have not been archived.

                                                  

65 R.A. DeVore, B. Jawerth, and B.J. Lucier, “Image Compression Through Wavelet Transform Coding,” IEEE Trans.
Inform. Theory, 38 (2), pp. 719–746, 1992.
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5.5.3 Evolution

Finally, the models, sensing configuration, and the associated computational hardware must be
designed to be flexible and modular. One major challenge is that the full system simulations must
account for retrofits and other potential hardware updates. Simulations should reflect the
maintenance history, which implies modularity of the family of models implemented. For example,
the action of replacing a particular hardware component in the full system should be accounted for
in the numerical simulation. This requirement will most certainly have important implications in
terms of databases and information management.

Similarly, model validation procedures and numerical predictions should theoretically be
revisited as soon as new measurements and new data from the damaged system become available.
These iterations should not be restricted to parametric calibration experiments. When new
measurements become available, the values of calibrated parameters can surely be confirmed or re-
calibrated. In addition, the model form should also be allowed to evolve. For example, when it is
assessed that a crack has formed and is growing, a material model that represents the mechanism by
which energy is dissipated through friction or impact between two components should be
augmented with a crack propagation model.

5.6. Key Technology Deficits

The following aspects of modeling and simulation are identified as crucial to the success of
damage prognosis:

1. Integration of models: Generally, several models must be integrated to characterize the
features of a particular damage scenario, the evolution of structural damage, and the resulting effect
on system performance. This integration is required because each model is constructed to capture a
particular phenomenon. Models may also be formulated using different physics (mechanical fields,
thermal fields, electro-magnetic fields, etc.) and different scales (macroscopic, microscopic,
nanoscale, etc.). Therefore, procedures must be established to ensure that adequate models are
developed and integrated into the full system simulation. In addition, the simulations must represent
the causal instigators completely. Modularity is also critical to ensure flexibility and adaptability.
For example, similar systems may require several perturbed models to reflect the past maintenance
history of sub-systems or individual components. Models and numerical simulations must be
managed in a flexible and modular way to ensure that retrofits, maintenance history, and other
potential updates are fully accounted for.

2. Computational limitations: Limitations in computational power and resources needed for
real-time prediction are obvious bottlenecks if damage prognosis is to rely heavily on numerical
analysis as opposed to full-scale testing. On the high-end computing side, computational resources
and networking capabilities limit the level of detail that can be included in the numerical
simulations. On the fast modeling and diagnosis side, the constraints include the amount of data that
can reasonably be processed by specialized DSP chips. Because of the required high degree of
integration between modeling and sensing, instrumentation limitations might also adversely impact
modeling.
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3. Confidence in results: It is essential to quantify the confidence in experimental and
simulation results. This quantification is required because some of the models implemented may be
stochastic in nature to reflect the fact that future environmental and operating conditions are
uncertain. Damage states, history, and evolution scenarios may also be uncertain. In addition,
measuring and modeling complex systems always requires the formulation of hypotheses and
approximations such as model reduction, truncation, and order selection, no matter how much
testing and computational resources are available. These approximations explain why uncertainty is
not just the manifestation of variability and partial knowledge, but also the result of the formulating
approximations. Decision making based on experimentation and simulation requires the knowledge
of confidence intervals associated with the data. This requirement ties into sensor and data
acquisition selection, model validation and predictability.

4. Knowledge acquisition: Knowledge acquisition refers not only to the activity of performing
physical experiments and developing mathematical and numerical models but also to data “mining,”
data “fusing,” and documentation. Capturing the human experience also fits under this category.
Opinions and subjective information are difficult to collect, exploit, and combine with formal
models. Special models might have to be developed for this purpose.

5. System Reliability: Because of the numerous sources of variability and uncertainty
previously mentioned, the decisions supported by measurements and simulations become reliability
assessments. Instead of providing deterministic answers, the decision models estimate the
probability of “failure” and whether such risk is worth taking. Little to no research is currently
available to formulate damage prognosis as a problem of system reliability and this should be
further investigated. In particular, there are few if any procedures to include modeling uncertainty
and nonprobabilistic descriptions of uncertainty into reliability assessment and decision making.
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6. UNCERTAINTY QUANTIFICATION

Robust model predictions and a quantifiable level of conservatism are necessary for the
practical adoption of damage-prognosis technology. Furthermore, the business case for damage
prognosis as envisioned in the present context requires greater robustness and demonstrably less
conservatism than the current technology. Achieving this enhanced robustness and reduced
conservatism necessitates the quantification of the uncertainties inherent in all phases of damage-
prognosis modeling.

The phases of the modeling process relevant to
damage prognosis are depicted in Figure 6.1. Uncertainty
is present in all of these phases including the observation
of nature, the abstraction of this observation into a
conceptual model, and its symbolic representation as a
mathematical model, as well as the concomitant numerical
and surrogate models and their evaluation. The
uncertainty associated with this process may be divided
into four areas, including those caused by measurement,
modeling, parameters, and evaluation. In this section,
some of the general considerations associated with
uncertainty quantification and specific issues related to
measurement, model, parameter, evaluation, and overall,
or total, uncertainty will be discussed.

To illustrate these concepts more concretely, consider
the simplified mechanical system depicted in Figure 6.2.
A priori measurement of the forcing function and response
will likely be contaminated by noise, deterministic
anomalies, and artifacts of the measurement system, all
leading to an approximation of the true load. This
variability is an example of measurement uncertainty. The
conceptual and mathematical models are typically formulated without regard to the friction in the
wheels and usually assume no slippage between the wheels and the ground surface. Also, such a
model is often formulated linearly because the spring nonlinearity at small deflections is considered
negligible. These two approximations result in inadequacies of model form; i.e., one type of
modeling uncertainty. Because of the conceptual disregard for wheel friction any nonzero offset in
the spring is neglected, leading to uncertainty in the initial conditions, another form of modeling
uncertainty. The system parameters are typically calculated from the geometric and material
properties of the mass and spring using handbook values for density and elastic modulus. These
values represent mean estimates from statistical distributions defined by material tests (themselves
subject to measurement uncertainty) and are a source of parametric uncertainty. Note that the
geometry of the actual system as well as the specific material composition may be subject to
measurement uncertainty or to manufacturing variability if the system is modeled from a nominal
design. Finally, unless the forcing function is particularly simple, the equations will usually be
solved numerically. For the present example this will entail the choice of an approximate integration
scheme and temporal discretization, as well as introducing numerical round-off and truncation
errors. These factors are examples of evaluation or solution uncertainty.

Figure 6.1 Phases of the
modeling process for prognosis.
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Figure 6.2 Examples of uncertainty in a simple physical problem.

6.1 General Consideration

The uncertainty associated with a given model, or collection of models, can be viewed either as
a compendium arising from the various sources or as a whole without regard to origin. Both
viewpoints will be required for successful implementation of damage-prognosis technology. The
various types of uncertainties can be roughly classified into three categories, including aleatoric
uncertainty (irreducible, inherent variability), epistemic uncertainty (potentially reducible lack of
knowledge), and simple error (reducible error or bias). In the foregoing example, noisy
measurements, statistically distributed properties, and manufacturing variability are examples of
aleatoric uncertainty. Epistemic uncertainty and error are represented by the model form and initial
condition approximations and by the numerical approximations necessary for solution. The
classification of the latter uncertainty group into error or epistemic uncertainty is largely a matter of
taste, although one might argue that the model-related uncertainties are epistemic, while those
concerning the solution are simple error.

Several classes of methods are available for formulating the logical and computational
framework of uncertainty analysis.66 Measure theoretical methods are more applicable to aleatoric
uncertainty. Such methods include classical probability theory in its various guises (frequentist,
Bayesian, etc.), Dempster-Schafer theory, and possibility theory. An axiomatic comparison of
standard probability theory and Dempster-Schafer theory is given in Table 2 as an example. Also
contained in the family of measure theoretic methods and usually associated with classical
probability theory are information and entropy theory.67 Set theoretic methods 68 include those based

                                                  

66 H.G. Natke and Y. Ben-Haim, Eds., “Uncertainty: Models and Measures,” Mathematical Research, 99, Akademie
Verlag, 1997.
67 S. Kullback, Information Theory and Statistics, Dover Publications, 1997.
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on fuzzy sets, interval arithmetic, and convex sets or convex modeling. Set theoretic methods are
primarily applicable to the treatment of epistemic uncertainty. Also available for handling epistemic
uncertainty is a relatively new approach called information gap theory.69 Hybrid methods, capable
of treating both aleatoric and epistemic uncertainty, based on a combination of fuzzy set theory and
fuzzy measure theory are also being investigated.70 Dynamical systems methods 71 are applicable to
unpredictability because of sensitive dependence on initial conditions and deterministic chaos; i.e.,
to some of the uncertainties arising from model evaluation. Candidate methods from dynamical
systems include strange attractor theory, the Liapunov exponent, and complexity theory.72

Complimenting methods for treating specific uncertainties is a recently developed method for
quantifying the total uncertainty;73 i.e., the total difference between measured data and model
predictions, in a generic sense.

Table 2. Axiomatic comparison of probability theory and Dempster-Schafer theory.

Probability Theory Dempster-Schafer Theory

In addition to a logical and mathematical framework for uncertainty characterization, a metric
for measuring uncertainty is required for quantitative comparisons and for the decision process for
damage prognosis. In a probabilistic context, the standard deviation of a variable is often taken as
the relevant metric. The related concept of confidence intervals may also be used. The situation is
not so clear for nonprobabilistic uncertainty, however. A variety of metrics are available for finite

                                                                                                                                                                        
68 T.J. Ross, J.M. Booker, and W.J. Parkinson, Eds., Fuzzy Logic and Probability Applications: Bridging the Gap, ASA-
SIAM Series on Statistics and Applied Probability 11, SIAM Publishing, Philadelphia, PA, 2003.
69 Y. Ben-Haim, Information-Gap Decision Theory: Decisions Under Severe Uncertainty, Series on Decision and Risk,
Academic Press, 2001.
70 G.J. Klir, “Uncertainty Theories, Measures, and Principles: An Overview of Personal Views and Contributions,” in
“Uncertainty: Models and Measures,” H.G. Natke and Y. Ben-Haim, Eds., Mathematical Research, Vol. 99, Akademie
Verlag, 1997.
71 A. Katok and B. Hasselblatt, “Introduction to the Modern Theory of Dynamical Systems,” Cambridge University
Press, 1995.
72 W.H. Zurek, Ed., “Complexity, Entropy and the Physics of Information,” Santa Fe Institute Studies in the Sciences of
Complexity, Proceedings Vol. 8, Addison-Wesley, 1990.
73 M.C. Anderson, T.K. Hasselman, and W. Gan, “Statistical Analysis of Modeling Uncertainty and Predictive
Accuracy for Nonlinear Finite Element Models,” Proceedings of the 69th Shock and Vibration Symposium, October
1998.
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sets of alternatives. Examples of some of these metrics for finite sets are listed in Table 3.
Corresponding metrics for countable and uncountable infinite sets are generally unavailable.

Table 3. Examples of uncertainty metrics for finite sets.

Name Formula Purpose
Hartley Measure ( ) AAAAH  of ycardinalit is ,log2= Nonspecificity
Generalized
Hartley Measure

( ) ( ) [ ] ( ) ( )∑∑
∈∈

=∅→=
XX A

X

A

AmmmAAmmN
22

2 ,0,1,02:,log Nonspecificity in
Dempster-Schafer theory

U-uncertainty
Measure
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possibility theory

Shannon Entropy ( ) ( ) ( )∑
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−=
Xx

xpxppS 2log Total uncertainty in
probability theory
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Shannon Entropy
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−= ∑∑

∈∈

Total uncertainty in
Dempster-Schafer theory

Hamming
Distance

( ) ( )[ ] ( ) function membership is xAxAAf
Xx

,121∑
∈

−−= Fuzzy sets

A variety of hurdles stand between the current state of the art for uncertainty quantification and
its meaningful implementation as an integral part of damage prognosis. These hurdles include the
problems of identification, classification, and attribution; incomplete theoretical development and a
lack of practical tools for some of the methods of treating uncertainty; and the endemic problem of
sparse or nonexistent data. Identification of uncertainty, its type classification, and its attribution of
source will require the collaboration of classical subject matter experts and a new breed of
uncertainty experts. Completion of the theoretical framework and the development of practical tools
for treating the myriad aspects of uncertainty are ongoing areas of research and require only time
and the proper impetus, such as the problem of damage prognosis. The lack of sufficient data, on
the other hand, is a problem that is impractical to overcome by mere data gathering. The only
tenable solution to this problem for the foreseeable future is the proper use of expert elicitation and
development of methods for fusing expert “data” with measured data.74

Nevertheless, uncertainty should not be dissociated from the modeling issues discussed in
Section 5.3. The attempt to explain a complex physical experiment by mathematical models
implicitly defines uncertainty. Modeling consists of translating observations or reasoning into
formal rules and equations through the formulation of a series of hypotheses. The probabilities, or
other representations of uncertainty, associated with assumptions and modeling rules should
therefore be included in the numerical simulation. Uncertainty also originates from several
processes commonly adopted during modeling, discussed below.

1. Selecting an inadequate model form: If a phenomenon or an interaction between variables
is not known precisely, an inadequate model form is likely to be implemented. This error
generates discrepancies between the “true” system and its mathematical representation.
Parameter calibration is commonly used to correct model form errors. However, this

                                                  

74 L.A. Klein, Sensor and Data Fusion: Concepts and Applications, Second Edition, TT14, SPIE Press, 1999.
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strategy may not be an appropriate approach, as it will often lead to physically unrealistic
parameter values. Uncertainty analysis may provide an efficient means of detecting
inadequate model forms and implementing corrective action.

2. Truncating the model order: Second order dynamics are generally truncated when it is
believed that they do not have a significant influence on the primary dynamics of interest.
Order truncation is therefore a common practice in numerical modeling. Truncation
typically consists of restricting the degrees of freedom of a problem to a subset of “master”
degrees of freedom and somehow condensing or approximating the information represented
by the omitted equations. Model order selection in autoregressive models and component
mode synthesis are examples of truncation methods in linear structural dynamics.

3. Approximating equations: Equations are often approximated for computational efficiency,
model order truncation, or because the exact functional relationship is unknown. In the case
of model order truncation, for example, a coupling force might be replaced with its
expected value, conditioned by the functional relationship between primary and secondary
variables. In essence, this approach defines an approximated system where the original
differential equations are solved “on average” instead of exactly. The second main class of
approximation is numerical approximation where the mathematical operators, spatial fields,
temporal fields, and energy content must be discretized for numerical implementation. In
both cases, the practice of associating an uncertainty model with the approximation and
analyzing the model accordingly should be promoted.

6.2 Measurement Uncertainty

Measurement uncertainty refers to the uncertainties arising from the measurement process
itself. Aleatoric uncertainty, or inherent variability, can come from noise in the measurement
process that is due to factors such as thermal instability, internal or external electromagnetic fields,
and quantization noise. Error and epistemic uncertainty can arise from electrical bias, gain errors,
and signal processing artifacts. Examples of the latter include aliasing introduced by sampling at too
low a rate, or contamination by signals outside the frequency range of interest, amplitude and phase
distortion from explicit filtering or the frequency response of the measurement system, numerical
processing of the measured data, and a myriad of other factors including human error.

The treatment of measurement uncertainties has a history almost as long as measurement itself.
The most common method of treating bias, gain, and temporal or frequency errors is by calibration
of each piece of measurement equipment with respect to known standards. Less common is the end-
to-end calibration of the entire measurement system. Externally generated noise can be dealt with in
some cases by using first principles modeling or independent measurement for deterministic or
statistical characterization of noise. So-called “dummy” transducers are often employed for
independent measurement. Aliasing errors can be avoided by use of the proper sampling rates or
analog anti-aliasing filters. A conceptually obvious, but little used, technique for minimizing
measurement uncertainties is “inverse” signal processing. In this technique, all or part of the
measurement system is modeled mathematically and the model is “inverted” to infer the “true”
signal from the processed one. In general, a wide variety of best practices have been devised for
many measurement schemes. While some of these techniques are common knowledge, some are
rather arcane or specific to a particular measurement instrument or scheme.
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The foregoing comments are pertinent to direct measurement of the quantities of interest. In
many applications, the desired quantities cannot be measured directly but must be inferred
indirectly based on available data. This inference is usually facilitated by the use of a physical
and/or empirical model of some sort. Thus, indirect measurements are subject not only to the usual
measurement uncertainties, but also to those typically associated with mathematical and numerical
models.

Measurement uncertainty is a significant part of the overall uncertainty picture. In many
situations, measured data are taken as absolute truth. This approach is obviously not correct because
measurements rely on the characteristics of real hardware, and on the physical or empirical models
underlying the design of that equipment. An honest quantification of measurement uncertainty is
crucial to a meaningful characterization of uncertainty as a whole.

6.3 Modeling Uncertainty

Modeling uncertainty is a catch-all term that describes all uncertainty not associated with
measurements, the parameters of the model, or the numerical solution of the model. This type of
uncertainty can be introduced during either the conceptual or mathematical modeling processes.
Because it is not possible to model complex, realistic systems at the level of elementary particles,
most real-world mathematical models are comprised of a set of field equations and associated
boundary and initial conditions, all used as an empirical surrogate for a physical model. These
equations are approximations of the complicated physics of the real world. The fidelity with which
they can predict the outcome of real world situations is limited and usually application dependent.

A variety of uncertainties can arise from the physical modeling process. Many of these can be
classified as epistemic uncertainty or outright error, although the use of a deterministic model for a
scenario that has stochastic elements (such as stochastically distributed parameters) leads to
aleatoric uncertainty. Modeling uncertainty can arise from approximations or errors in the form of
the model equations, the applied loads and the boundary and initial conditions. Form errors can be
attributed to known, but not modeled, physics (simple error or aleatoric uncertainty) or to unknown
effects (epistemic or aleatoric uncertainty). In either case the results are the same: induced
discrepancies between model predictions and reality.

There are few methods available for the systematic treatment of uncertainty in physical models.
Clearly, if the uncertainty is due to physics that are known, but not modeled, either the model can be
revised to include these physics or an attempt can be made to characterize the uncertainty induced
by their exclusion. However, if the excluded physics are not known, little can be done to
characterize the concomitant uncertainty.

Surrogate models also suffer from modeling uncertainty. However, the situation is exacerbated
for surrogate models because the model form or possible forms are specified a priori and are not
based on first principles. This process leads to both training errors and generalization errors.
Training errors arise because the specified model form is incapable of accurately reproducing the
training data generated by a physical system or model with a different underlying functional form.
Training errors can be minimized by many techniques (e.g., least squares) as long as sufficient data
are available. Generalization errors (i.e., interpolation or extrapolation errors) also arise because of
form errors but cannot be minimized by additional data at the training points. There is often a
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tradeoff between accuracy at the training points and the generalization potential of a surrogate
model. The optimal choice is application dependent.

An array of techniques is available for the characterization and minimization of uncertainty in
surrogate models. Most of these address the parameter estimation problem for these models.75,76,77

Most of the parameter estimation methods rely on probabilistic concepts, but a few based on fuzzy
methods are available. At least one general theory is being developed to encompass the uncertainty
of surrogate models,78 although this theory only addresses probabilistic uncertainty.

6.4 Parameter Uncertainty

The term parametric uncertainty refers simply to uncertainty in the input parameters of a
model. Once a model’s form has been specified by a complete set of mathematical equations, all
that remains for a complete mathematical statement of the problem is numerical quantification of
the various constants. These constants may be geometric or material properties, or they may be
those that characterize the applied loads, or boundary or initial conditions. Note that if enough
information is available it may also be possible to explicitly model other types of uncertainty in a
parameterized form and include them in the problem formulation. No matter where they appear in
the formulation of a problem, uncertainties in the numerical constants will lead to uncertainties in
model predictions. These uncertainties differ from those due to modeling or evaluation uncertainties
that are not explicitly included in the problem.

Parametric uncertainty is perhaps the most widely studied aspect of uncertainty. The
characterization of the effect of this type of uncertainty on model predictions is amenable to a wide
variety of techniques such as sensitivity and effects analysis,79 Monte Carlo methods, 80 reliability-
based methods,81 fuzzy set, and interval propagation methods, 82 and stochastic finite elements. 83 The
sampling techniques collectively known as design-of-experiments can be powerful tools for
performing sensitivity and effects analysis and estimating the probability information of an output
feature. Such methods include orthogonal array sampling and Latin hypercube sampling. Effects
analysis techniques such as the analysis of variance and differential sensitivity analysis provide
means to assess the global influence of an input parameter on an output feature. This information
generalizes the conventional sensitivity information that provides a local gradient and direction at a
sample point in the design space.

Formulating and solving inverse problems in the context of uncertainty analysis is still an area
of active research. In a probabilistic context the problem consists in calculating the posterior
distribution of input parameters such that predictions of the numerical simulation are statistically

                                                  

75 E. Walter and L. Pronzato, Identification of Parametric Models from Experimental Data, Springer-Verlag, 1997.
76 S. Haykin, Neural Networks, A Comprehensive Foundation, Prentice Hall, 1999.
77 V. Cherkassky and F. Mulier, Learning from Data: Concepts, Theory, and Methods, Wiley Interscience, 1998.
78 V.N. Vapnik, Statistical Learning Theory, Wiley Interscience, 1998.
79 G.E.P. Box, W.G. Hunter, and J.S. Hunter, Statistics for Experimenters, An Introduction to Design, Data Analysis,
and Model Building, Wiley Interscience, 1978.
80 C.P. Robert and G. Casella, Monte Carlo Statistical Methods, Springer-Verlag, 1999.
81 W.R. Blischke and D.N.P. Murthy, Reliability: Modeling, Prediction, and Optimization , Wiley, 2000.
82 G.J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall, 1995.
83 R.G. Ghanem and P.D. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, 1991.
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most consistent with physical observations over the largest possible region of the input space.
Bayesian inference,84 where the posterior distribution is expressed as the product of the prior
distribution and the likelihood function, is generally the formulation of choice. A significant hurdle
is the computational limitation introduced by multivariate statistical analysis that rapidly requires
very large numbers of simulation runs. Recent promising techniques include the Markov Chain
Monte Carlo algorithm and its many variants that can sample a posterior distribution without
assuming anything about its functional form.

The probabilistic approach is only one of many available for treating parametric uncertainty.
Other frameworks that may offer attractive alternatives to the theory of probability, especially in the
event of uncertainty from lack of knowledge (epistemic uncertainty) are available for quantifying
and propagating uncertainty. Dempster-Schafer theory, possibility theory, fuzzy sets, interval
methods, convex models of uncertainty, and information gap theory are potential alternatives.

6.5 Evaluation Uncertainty

Although discrepancies caused by solution methods and numerical errors have always been
acknowledged to exist, they have rarely been considered in an uncertainty context until recently.
Approximate formulations include spatial discretization techniques such as the finite difference and
finite element methods. These methods are sometimes accompanied by auxiliary model order
truncation, such as the modal truncation commonly used in the solution of linear eigenvalue
problems. Various types of temporal discretization are used to facilitate the integration of dynamic
equations, along with a myriad of approximate integration techniques. Examples of these
integration methods include the Runge-Kutta, Newmark beta, and Monte Carlo techniques.
Truncation and round-off errors appear whenever a finite machine is used to compute solutions to a
specific set of approximate equations. Error estimates have long been available for some of these
approximations and numerical errors,85,86 although many of them are not sharp enough to be useful
in estimating uncertainty realistically.

A relatively new area of interest with regard to the uncertainty arising from model evaluation is
complexity and indeterminacy arising from the mathematical or numerical equations treated as
dynamic systems. An enormous amount of research into the sensitive dependence on initial
conditions, commonly called deterministic chaos, and other sources of complexity has been
conducted in the last four decades. Useful techniques for characterizing the uncertainty inherent in
the solution of these systems are emerging. Examples of these methods include the Liapunov
exponent, strange attractor theory, and Melnikov’s method.87,88,89 Although their application to the
study of uncertainty is in its infancy, these methods hold promise for application to particular
classes of problems.
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The greatest difficulty in characterizing the uncertainty caused by the approximate, numerical
solution of mathematical problems is the lack of exact solutions that can serve as references. Such
solutions are available only for a few linear equations and simple geometries. In other cases, the
order of convergence can be established theoretically and verified numerically using multiple
computational grids or time stepping strategies. The issue then becomes to assess whether the
discrete solution is “close enough” to the (unknown) solution of the continuous equations and to
quantify the numerical uncertainty. Techniques such as the grid convergence index90 have been
proposed to verify the adequacy of a numerical solution but their application to arbitrary fluid
mechanics and structural mechanics problems remains incomplete.

When several discrete solutions are provided, extrapolation techniques such as Richardson’s
extrapolation can estimate the true-but-unknown solution of the continuous equations. The main
drawback is that convergence verification and extrapolation methods rely on multiple computational
grids and numerical evaluations. Because the model is evaluated, such approaches are generally
referred to as a posteriori error estimates. A priori estimates of solution error can also be derived in
particular cases. They do not rely on computed solutions and use, instead, the mathematical
properties of the equations solved. Practical issues such as mesh distortion, however, rapidly
deteriorate theoretical estimates and it is generally prudent to verify numerically the evaluation
uncertainty. This situation cannot be avoided, but might be mollified to some extent by the use of
expert data.

6.6 Total Uncertainty

The breakdown of uncertainty into that associated with measurement, modeling, parameters,
and evaluation represents a bottom-up view of uncertainty. It is also possible, and may even be
more practical, to look at uncertainty from the top down. This is accomplished by characterizing
uncertainty as a whole, without regard to origin. The term total uncertainty has been applied to this
viewpoint. The obvious problem with a total uncertainty approach is the lack of sufficient data to
characterize the various specific uncertainties that may arise. One approach is to augment real data
with expert opinion. Another approach is to treat uncertainty generically,91,92 although the only
known development relies on a probabilistic formulation.

The generic approach to total uncertainty does not require an inordinate amount of data for a
specific problem. Rather, it utilizes comparisons of pairs of corresponding measurements and model
predictions for a class of problems generically similar to the one of interest. To be meaningful, the
generic data must contain a variety of model-measurement pairs with the various sources of
uncertainty adequately represented. Examples of classes of generic uncertainty considered to date
include truss-type space structures, reinforced concrete structures subjected to blast loading, and car
crash simulations.
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The existing method for characterizing generic total uncertainty normalizes the information in
both the measurements and model predictions by computing the singular value decomposition of
each measurement and prediction, estimating the statistics of the differences of the components of
the decomposition, expanding the model representation as a function of these normalized quantities,
and propagating the uncertainty through the model of interest to estimate the second order statistics
of the uncertainty. Uncertainty propagation may be affected by a first order Taylor series
approximation, interval propagation, or Monte Carlo methods. This approach has the additional
advantage of being able to treat both spatially and temporally distributed quantities. It remains to
incorporate nonprobabilistic uncertainty into the methods formulation.

Besides the endemic problem of obtaining a sufficient uncertainty database, the generic
approach to total uncertainty suffers from two potential drawbacks. One of these drawbacks is the
interpretation and use of generic uncertainty information. This problem can be solved by developing
consensus standards for interpretation of the information for each generic class, a task that is
application dependent and requires expert opinion. The second potential problem is one of
attribution. Reduction of uncertainty requires understanding the origin of the uncertainty. This
information is lost in a total uncertainty characterization. However, if used in conjunction with
specific treatments of measurement, parametric, and evaluation uncertainties, it may be possible to
use a total uncertainty characterization to estimate the contribution of modeling uncertainty to the
overall uncertainty.
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7. RELIABILITY ASSESSMENT AND DECISION MAKING

As mentioned previously, damage prognosis faces numerous sources of variability, uncertainty,
and lack of knowledge. Examples are experimental variability, parametric uncertainty, unknown
functional forms of the mathematical models, and extrapolated future loading and environments.
The discussion of damage prognosis would therefore be incomplete without addressing the issue of
decision making under uncertainty. This section summarizes the framework of reliability analysis
then discusses the needs for other decision-making frameworks that do not necessarily rely on a
probabilistic description of uncertainty.

Some of the difficulties of decision making discussed in this section include the mathematical
representation of the failure criterion or criteria, the statistical sampling of the corresponding failure
domain, and the formulation of decision-making strategies in the context of nonprobabilistic
uncertainty. Note that “failure” is used in a broad sense here. It can refer to the conditions leading to
structural failure but also, generally speaking, to the situation where a demand, D, exceeds a
capacity, C, as illustrated in Figure 7.1, no matter how “demand” and “capacity” are defined.

Figure 7.1 Illustration of the concepts of demand, capacity, and failure of a system.

Section 7.1 presents the concept of reliability analysis for decision making under probabilistic
uncertainty and discusses the computational approaches commonly available to solve this problem.
Section 7.2 addresses the role of surrogate modeling (also known as metamodeling) for integrating
the experimental diagnostics, modeling and simulation, data interrogation, and reliability
assessment into a practical damage-prognosis solution. Finally Section 7.3 briefly addresses cost-
benefit analysis as well as the need for nonprobabilistic decision-making strategies.

7.1 Reliability Assessment

In reliability analysis, the failure state of a system is represented by a function of the response
known as the limit state. Figure 7.1 simplistically defines a limit state as the structural conditions or
operating environments that lead to the demand exceeding the system’s capacity. The limit state is
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generally expressed as g = C-D such that negative values (g < 0) of the function g denote the failure
or unsafe operating mode of the system.

The first challenge is to express the limit state g in terms of a mathematical equation or set of
equations. This formulation is generally straightforward when failure is defined through a physical
criterion, such as “the maximum size of a crack or delamination area should not exceed a given
level” or “the speed of the aircraft should not lead to the occurrence of wing flutter.” When the
definition of the limit state involves non-physical criteria, subjective performance evaluations, or
linguistic ambiguities, translating the definition into a set of equations that can be implemented in a
reliability code can be more challenging. Clearly the derivation of a limit state or multiple limit
states is application-specific.

Once the limit state has been defined, reliability analysis consists of estimating the probability
of failure; that is, the probability that demand will exceed the system’s capacity. Decision making
then answers questions such as “Is the probability of failure acceptable?” or “Which scenario,
configuration of the system, or operating condition leads to an acceptable probability of failure?”
Decision making relies on estimates of reliability, as well as quantifying its confidence, to decide
which course of action should be taken. The second challenge is therefore to calculate the
probability of failure, not only because of the combinatorial complexity of integrating a complex
function in a multiple-dimension space, but also because it involves computing rare events located
in the tails of the statistical distributions.

Figure 7.2 Joint probability density function of demand (D) and capacity (C) and limit state
g = C−D that separates the safe region from the failure region.

The probability of failure PFailure is defined as the integral of the Joint Probability Density
Function (JPDF) of demand D and capacity C over the failure or unsafe region. As mentioned
previously the failure region is mathematically defined as g < 0 and it is the region bounded by the
limit state g = 0, as shown in Figure 7.2. If failure is defined, for example, in terms of a wing flutter
condition, then reliability analysis consists of estimating the probability of reaching this limit state
given uncertainties about the predictive model, current health of the system, and expected loading.
The analysis begins with identification of the failure modes (such as wing flutter caused by
delamination) and the random variables of the models and numerical simulations that affect these
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failure modes. Examples are parameters of a wind gust model for flutter analysis, or ply orientation
angles and homogenized elasticity parameters in the delamination of a fiber-composite component.
Reliability analysis requires the incorporation of the failure model into a finite element model or
other model to build a relationship between system response and damage level. Interfacing the
analysis model and the calculation of a limit state can be a significant computational and software
integration challenge. In addition, input uncertainty must be described by a JPDF probability law,
which can impose serious limitations on the representation of nonprobabilistic sources of
uncertainty.

Integration of the JPDF across all random variables for the failure region g < 0 of the parameter
space gives the probability of failure PFailure. The reliability of the system is then simply defined as
one minus the probability of failure. Because closed form representations of the limit state g and the
failure domain (g < 0) are generally not available for complex systems, an approximation must be
sought. Two computational strategies commonly available to estimate the reliability are briefly
discussed below.

The first approximation strategy consists of numerically integrating the probability of failure
through statistical sampling. A series of simulations are run to find the percentage of results that fall
within or outside the failure region of the response space. The simplest sampling method is the
Monte Carlo simulation, which chooses which simulations to run by randomly sampling the
probability distributions of the input parameters. A theoretical proof of convergence is available,
which can be taken advantage of to estimate convergence of the probability of failure. The main
limitation is that Monte Carlo sampling can require more simulation runs than can reasonably be
performed, especially when the number of random variables is large (typically, more than ten).
Stratified sampling techniques, such as the Latin hypercube sampling (LHS), and fractional factorial
designs of experiments can provide a trade-off between convergence of the numerical integration
and the number of computational simulations. Another way of limiting the number of simulations is
by intelligently choosing the computer runs. There are adaptive sampling techniques that can
sample simulations mainly around the limit state and failure domain, leading to an accelerated rate
of convergence compared to purely random sampling.

The second approximation strategy relies on Taylor series expansions of the limit state to
reduce the potentially significant computational burden of sampling-based integration. The
probability of failure is approximated by estimating the system’s most probable point (MPP), which
is the location on the limit state g = 0 that is closest to the origin, if the limit state is transformed to
standard normal space. In standard normal space, the JPDF is decaying as it progresses out from the
origin, so the closest location to the origin is the “most probable” system state. This calculation is
illustrated in Figure 7.3. First, the random variables X of the simulation are transformed into an
uncorrelated, standard normal space described by the random variables u. The standard normal
multivariate JPDF of normalized variables u is denoted by Φ. Second, the MPP is estimated by
solving a minimum distance optimization problem as shown in Figure 7.3. Third, the distance β
between the MPP and the origin is calculated. Finally the probability of failure is estimated by
finding the standard normal cumulative distribution value at β, that is, PFailure = Φ (-β).
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Figure 7.3 Concept of fast probability integration for reliability analysis.

Expansion-based approximations such as the first-order reliability method (FORM), second-
order reliability method (SORM), and advanced mean value (AMV) follow the principle of these
calculations and are collectively referred to as fast probability integration (FPI) methods. FPI
methods differ by the order of the polynomial expansion used in the neighborhood of the MPP and
other details.93 Generally the limit state g = 0  is approximated using either a first-order or second-
order Taylor series expansion about the MPP (FORM and SORM). Expansions about the mean
values of the input random variables, rather than the MPP, are also possible with the AMV method.
In this context, runs of the simulation code are performed to estimate the derivatives needed for the
Taylor series expansion, instead of sampling the probability distributions. This explains the
significant computational savings that can be achieved compared to sampling-based approaches.

The computational savings of expansion-based FPI methods, however, are provided at the
expense of formal proofs of convergence. Another potentially devastating limitation is the accuracy
with which linear and quadratic polynomials can approximate nonlinear limit-state functions. A
solution that deserves further research and development could be to provide more flexibility in the
way implicit limit state functions (such as those generally provided by finite element simulations)
are approximated. Libraries of response surface methods, fractional functions, exponential decays,
neural networks, and radial basis functions, for example, could be implemented to augment the
limited capability of first-order and second-order polynomial approximations.
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Finally, the value of hybrid methods for reliability analysis is recognized. Hybrid methods
refer to the integration of sampling-based and expansion-based approaches to concentrate the effort
of statistical sampling in areas of the reliability domain where it is most needed; that is, along the
limit state. More information about the limit state, in turn, makes it possible to fit with better
accuracy the polynomial models that approximate the true but unknown limit-state function.

7.2 The Role of Metamodeling for Information Integration

Approximations implemented to reduce the cost of a reliability assessment do not, however,
reduce the computational burden of a single numerical simulation. When the prognosis of damage
involves the analysis of large finite-element models or other physics-based models, the number of
runs that can be executed in a reasonable time might be limited. It may then be advantageous to
spend the available computational resources on developing fast-running surrogates to the
computational mechanics simulation, as discussed in Section 5, rather than attempting to directly
estimate the reliability of the system. Reliability assessments based on fast-running metamodels
then become computationally efficient.

Metamodels therefore play a central role in the integration of information from the sensing
network and the predictive modeling capability. This concept is illustrated in Figure 7.4 by showing
the integration of experimental diagnostics, modeling and simulation, data interrogation, and
reliability assessment on local sensing and computing nodes. The sensing and computational
capabilities of such nodes can be tailored to monitor particular aspects of the system, such as a
critical joint, and can be made robust to external sources of variability, such as ambient vibration.

Figure 7.4 Integration of experimental diagnostics, modeling and simulation, data interrogation,
and reliability assessment on local sensing and computing units for damage-prognosis
solutions.
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Metamodels take the form of polynomial response surfaces (illustrated in Figure 7.5). Other
functional forms, such as fractional models, exponential decays, neural networks, statistics-based
models, and radial basis functions, to name only a few, can be considered depending on the type of
input-output relationship considered. The design-of-experiment techniques discussed in Section 5
can greatly improve the efficacy of the training step by choosing intelligently a subset of simulation
runs based on the type of metamodels trained and the level of fidelity required. Metamodels make it
feasible to perform sampling-based reliability estimates, therefore guaranteeing a converged
estimate of the system’s probability of failure. The accuracy then depends on how well the
metamodels estimate the response of the computational model at parameter values not used for
training. Fortunately, validation criteria and goodness-of-fit indicators are available to control the
quality of training and level of fidelity. The adequacy of metamodels can be assessed prior to their
deployment on the damage-prognosis nodes and their integration with the sensing system.

Figure 7.5 Response surface developed as a surrogate to a finite element analysis.

Because reliability analysis is applicable to many engineering problems, general-purpose
software is being developed to perform sampling-based and expansion-based sensitivity, uncertainty
quantification, and reliability assessments. The software packages NESSUS®94 and Design Analysis
Kit for Optimization and Terascale Applications (DAKOTA)95 are two examples of software that
can be interfaced with a variety of general-purpose finite-element packages. These and other
uncertainty quantification, reliability, and numerical optimization packages also include limited
capabilities for metamodeling that can be taken advantage of.
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7.3 Decision Making Under Uncertainty

Formulating decision making in terms of a reliability assessment is attractive because it can
handle the sources of experimental variability and modeling uncertainty. Reliability analysis also
provides a well-defined computational framework. The main constraint, however, is the
characterization of the sources of uncertainty with probability laws.

Situations may arise where there is no evidence that suggests that a source of uncertainty can be
represented as a probability function. Three situations are listed here where this may be the case.
First, testing may be limited, impractical, or too expensive, hence impeding the collection of
multiple data sets from which statistics can be established. Second, some components of the
decision-making process may originate from judgment or expert knowledge. The uncertainty
associated with subjective opinions such as “the surface finish is smooth” or “the temperature is too
high” is generally not expressed in terms of probabilities. A third essential category of
nonprobabilistic uncertainty is the lack of knowledge associated with the unknown functional form
of a mathematical model. An example might be the assumptions made to develop a turbulence
model or a contact algorithm. Such assumptions may be somewhat arbitrary because of our
imperfect knowledge of the underlying physical phenomena. Therefore, they introduce sources of
uncertainty, but it is generally not possible to define a probability law that describes the likelihood
that a particular assumption is better than the others. Section 6 provides other examples of modeling
uncertainty.

One source of uncertainty that is likely to seriously affect the experimental and simulation
results of any damage prognosis is the initial condition of the structure in terms of residual stress
state and distribution of initial flaws. It may not be possible to account for such complex initial
conditions in the models. Furthermore, deriving probabilistic information about a distribution of
residual stresses and initial flaws might require a prohibitive number of physical specimens and
destructive evaluations. If evidence in terms of experimental data, expert opinion, or first-principle
physics is not available to suggest a specific probability structure, simply assuming a structure does
not solve the problem because it can lead to the under-prediction of the probability of failure, as
illustrated by a number of authors.96 One could easily think of many other effects that even well-
controlled experiments or high-fidelity models will not be able to account for in a probabilistic
manner.

The reliability framework, because of its reliance on the theory of probability, cannot handle
such situations. Procedures must be developed for decision making in the face of nonprobabilistic
uncertainty. Clearly, the first step is to represent the variability, uncertainty, and lack of knowledge
with theories other than probability theory. Within the last three decades, alternate theories have
been developed to represent uncertainty. Section 6 lists several of them, such as the theory of
random sets, the Dempster-Shafer theory of evidence, the theory of possibility, fuzzy logic, and
interval arithmetic. Figure 7.6 illustrates how uncertainty about a numeric or linguistic variable
(whose value can be equal to either A, B, C, or D) would be represented by these previous theories.
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Figure 7.6 Representing uncertainty with various theories. A random variable can take the values
A, B, C, or D. Functions are defined to express the degree of evidence, belief,
possibility, or probability of each value. In all cases, a degree equal to one indicates
certainty, while zero indicates impossibility.

The second step is the aggregation (or combination) of various sources of nonprobabilistic
uncertainty. Although this is an open area, research in generalized information theory (GIT)
suggests that mechanisms might be found to link the different theories together. Information
integration is essential to solve any practical damage-prognosis problem where the uncertainty
about some components of a complex engineered system are represented with probabilities while
other sources of uncertainty are represented differently. For example, a bridge has recently been
proposed through the Bayesian theorem of posterior probabilities to link the membership functions
of fuzzy logic to probability density functions.97 Such a link makes it possible to combine expert
judgment with probabilistic information in reliability analysis.98 Unfortunately bridges between
other GIT representations of uncertainty either do not yet exist or they do not currently offer
computational procedures that can be implemented for practical problem solving.

In this context the question is not so much how to represent the uncertainty, but rather what the
effect of these “unknown unknowns” is on the decision. This potential roadblock can be addressed
by applying decision theories that focus on decision making instead of attempting to represent the
uncertainty with a nonprobabilistic theory. An example is information-gap theory where the
clustering of uncertain events is modeled instead of their occurrence,99 Information gap is defined as
the lack of knowledge between the information available and what is needed to support the
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decision. Clearly such a definition is very broad and it can encompass most sources of uncertainty.
Information-gap theory offers a framework that, while computationally expensive, allows us to
study the robustness of a decision to probabilistic or nonprobabilistic sources of uncertainty.

Figure 7.7 compares the robustness of four decisions to a nonprobabilistic uncertainty. The
performance might, for example, represent the reliability of an aging system given a prognosis of its
damage state and a forecast of future operating conditions. The decisions might, for example, be to
field the original system or to retrofit components believed to be potentially faulty in hope of
improving the overall system reliability. The uncertainty considered in this calculation is a
modeling uncertainty; specifically, the unknown functional form of a submodel included in the
numerical simulation.100 Such uncertainty represents a lack of knowledge that cannot be described
by a probability density function. Instead a generic “horizon-of-uncertainty” parameter is defined to
express how much the model can deviate from the current knowledge. Figure 7.7 illustrates that one
decision (decision 3) leads to a total loss of performance. Other decisions, while witnessing
deterioration in performance, have levels of uncertainty that are somewhat robust to moderate.

Figure 7.7 Example of nonprobabilistic cost-benefit analysis.

Results such as those illustrated in Figure 7.7 lead to cost-benefit analysis. Typically no more
than a given horizon of uncertainty (whether it is defined in terms of probabilistic or GIT measures)
is allowable to guarantee a minimum performance. Tolerating no more than a given uncertainty
level comes at a cost. To better understand, and hopefully reduce, the uncertainty and its effect on
system performance, more testing, additional modeling, or a combination of both is recommended.
Some decisions might also be more expensive or less practical to implement. Damage-prognosis
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solutions must integrate the means of performing cost-benefit analyses with probabilistic and GIT
representations of uncertainty to provide decision makers with the information they need about the
future remaining life and performance of their systems.
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8. CONCLUDING REMARKS

The aim of this report has been to define the concept of damage prognosis and highlight the
necessary technologies required to develop damage-prognosis solutions. There exists a clear and
increasing need for prognosis in a range of applications in which extending the life of the system
would result in economic benefits, risk reduction, and improved human safety. The wide variety of
possible applications in military and civil infrastructure implies the need for a multidisciplinary
technology development.

Damage-prognosis solutions will require the integration of the following three technology areas:

1. Sensing and data acquisition
2. Data interrogation techniques
3. Predictive modeling and uncertainty analysis

The expected solution is likely to consist of an array of autonomous sensing devices that can
interpret the measured system response and transmit decisions about the state of the structure. These
decisions are then assembled and interrogated to determine whether the structure has accrued
damage. The output of the interrogation is then coupled to a refined damage-evolution model that
can predict the remaining useful life with quantified uncertainty, given the interpreted state of the
structure and knowledge of its history (e.g., past loading, maintenance, modifications) and
anticipated future loads. Within each of these areas there are still major technical challenges that
need to be addressed before damage-prognosis solutions can be realized.

There are many issues to be considered in the area of sensing systems and the development of
data-acquisition hardware. To begin, there is a need to build autonomous, intelligent sensor systems
that transmit decisions rather than streaming data. Fortunately, the integration of MEMS technology
with microprocessors may provide such sensor systems in the foreseeable future. To date, almost all
sensor systems deployed for damage detection monitor the system’s response to its ambient
environmental and operational conditions. Improved capabilities may be realized though the use of
active sensing, in which actuators that provide an input tailored to the damage detection activity are
deployed on the structure. In addition, the sensor-system design must consider telemetry issues. In
the cases that necessitate wireless telemetry, there are still many outstanding issues regarding the
robustness of communications protocols. The integration of all of these technologies into single,
intelligent devices will require a source of power. The most amenable technology for localized
power is the use of parasitic generators that derive energy from ambient vibration. Note that if
power needs to be provided by direct connections, then the need for wireless telemetry is
eliminated, as the cabled link can also be used for the transmission of data. Hence, the development
of micropower generators is a key factor for the development of the hardware. Because various
portions of the sensing and data-acquisition system represent new technologies, the overriding
consideration of reliability still exists, as it does with any condition monitoring system. The
hardware configuration must be more reliable than the system it is monitoring. One means of
obtaining this reliability is through the use of redundant sensor hardware. Therefore, the tradeoff
between an optimal and redundant sensor system must be considered as part of the damage-
prognosis process.

The primary role of data interrogation is to extract pertinent features from numerically generated
and experimentally measured data and build statistical models that can be used to define the
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location and extent of damage. Significant challenges are associated with the a priori definition of
damage sensitive features when data from a degraded structure are not available. One must also be
able to define decision boundaries associated with the feature distribution that indicate damage.
Such definitions are again difficult when data from the degraded system are not available.
Numerical modeling may be useful to address this issue. The feature extraction process must
consider the issue of dimensionality. Reducing the data dimension can improve data transmission,
statistical classification, and test-analysis correlation. Major technological challenges also are
associated with data normalization because the measured response characteristics are not
necessarily produced by a known input spectrum or known operational and environmental
conditions. Finally, to obtain a prognostic capability, statistical models must be developed that can
define the future loading the system will experience.

Numerical modeling development needs to occur at both local and global levels using physics-
based and surrogate reduced-order models. This need implies that a variety of models will most
likely be employed in the damage-prognosis process. Challenges associated with physics-based
models include simulating the initiation of damage on a local level while at the same time capturing
the effects of this damage on the global system response. Currently, such models are
computationally demanding for even the most powerful parallel processor systems. In order to
deploy a prognosis capability onboard a structural system, the input-output relationships defined by
multiple runs of the detailed physics-based model must be captured with surrogate reduced-order
models. Surrogate models, which may take the form of neural networks, support vector machines or
fuzzy inference systems, require significant computational resources for their training. The
prognostics part of the modeling requires updating the estimate of remaining useful life as
subsequent loading is applied and further degradation occurs. Implicit in this prognosis process is
uncertainty, and how it propagates through the modeling process. Uncertainty can be introduced
into the modeling process at all stages. Also, there are sources of uncertainty that will be difficult, if
not impossible, to quantify, such as the distribution of initial flaws or residual stresses within a
material. Currently, uncertainty quantification is the focus of several large-scale research efforts, but
it has yet to be demonstrated that uncertainty can be accurately quantified for large, multicomponent
structural systems. Reliability methods provide a framework for predicting the system’s remaining
useful life with quantified uncertainty and will most likely become an integral part of the damage
prognosis.

Finally, the three technology areas discussed above must be developed in an integrated manner
to realize damage-prognosis solutions. Currently, there is a tremendous amount of research being
conducted in these three technology areas, but in general this research is not being conducted with
damage prognosis as the end goal. The integration of these technologies is necessary because many
system characteristics will not be known at the onset (e.g., sensing system processing requirements,
numerical damage model parameters, and statistical model decision boundaries). The integrated
approach will facilitate the design of damage-prognosis systems in a way that will better define
these characteristics, particularly when information from damaged systems is not available. In
addition, if these technologies are developed for general purpose applications, they most likely will
not be optimized for damage prognosis and will not necessarily represent the most cost-effective
solution for this problem.

Although this report has concentrated on the technological aspects of damage prognosis, several
related financial and human factors will need to be explored in parallel. Clearly each application
will require a cost-benefit analysis. Even though the potential benefits of prognosis are enormous,
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the occurrence of false-negative and false-positive damage indications can have significant adverse
consequences. The false-negative indications of damage clearly will produce adverse effects in
terms of preventing damage and mitigating injury to users. False-positive indications will cause a
loss of confidence in the prognosis system and will unnecessarily reduce asset readiness. A
consideration from the human factors perspective is that the decision-making process is potentially
taken away from the system operator, which may not be well received, and may give rise to issues
of liability and certification. For safety-critical systems, such as aircraft and nuclear installations,
the damage-prognosis technology will have to go through an extensive demonstration period. It is
more than likely that the damage-prognosis process will have to be deployed in parallel with more
traditional maintenance procedures until the added advantages of the process can be established.
Therefore, an initial goal might be to develop damage-prognosis solutions for systems in which
failure does not have adverse life or safety implications.

Fundamentally, damage prognosis requires the ability to measure and model system response on
widely varying length and time scales. Such problems are difficult, and hence in closing it will be
reiterated that the authors believe that developing damage-prognosis solutions is a “grand
challenge” problem for engineers, material scientists, statisticians and information technologists in
this century.
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ACRONYMS

3-D three-dimensional
A-D analog-digital
AMV advanced mean value
AR autoregressive
ARX autoregressive with exogenous inputs
ASCI Advanced Scientific Computing program
CAA Civil Aviation Authority
COST Conference on System Identification and Structural Health Monitoring
COTS commercial-off-the-shelf (technology)
DAKOTA Design Analysis Kit for Optimization and Terascale Applications
DAMAS International Conference on Structural Damage Assessment Using Advanced

Signal Processing Procedures
DC a constant offset in a signal
DoE design of experiment
DSP digital signal processing
EDM electrical discharge machining
EPC elements of prognosis capability
ERLE Engine Rotor Life Extension program
FAA Federal Aviation Administration
FE finite element
FORM first-order reliability method
FPI fast probability method
GIT generalized information theory
HCF high-cycle fatigue
HERT high-explosives radio telemetry
HUMS health and usage monitoring system
IC integrated circuit
IEEE Institute of Electrical & Electronics Engineers
IJF International Journal of Fatigue
JEM Journal of Engineering Mechanics
JPDF joint probability density function
LANL Los Alamos National Laboratory
LHF Latin hypercube sampling
MEMS micro-electro-mechanical systems
MPP most probable point
MSSP Mechanical Systems and Signal Processing
NDI nondestructive inspection
NESSUS® a software program developed by Southwest Research Institute
NST novel sensing technology
PZT piezoelectric
RF radiofrequency
ROC receiver operating characteristic
SHM structural health monitoring
SI system integration
SORM second-order reliability method
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SPIE Proceedings of SPIE, Nondestructive Evaluation of Highways, Utilities and
Pipelines IV

SSIs structurally significant items
STAN Proceedings of the Second International Workshop on Structural Health

Monitoring, Stanford University
TARMA time-dependent auto-regressive moving average
XML extensible markup language
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APPENDIX A: WORKSHOP PARTICIPANTS AND THEIR AFFILIATIONS

DAMAGE PROGNOSIS WORKSHOP ATTENDEES

NAME AFFILIATION TECHNICAL SPECIALTY

Adams, Douglas E. Purdue University,
School of Mechanical Engineering

Data Mining/Damage
Prognosis

Addessio, Frank L. Los Alamos National Laboratory Computational Continuum
Mechanics

Anderson, Mark C. Los Alamos National Laboratory Data Interrogation &
Analysis

Barber, Laura J. Los Alamos National Laboratory Licensing Executive
Bement, Matthew T. Los Alamos National Laboratory,

Engineering Analysis Group
Controls

Brown, David L. University of Cincinnati,
Dept. of Mechanical Engineering

Vibration Testing

Butler, Thomas A. Los Alamos National Laboratory,
Engineering Analysis Group

Computational Structural
Dynamics

Cafeo, John A. General Motors Research & Development Center Testing, Model V&V in
Automotive Applications

Childs, Dara W. Texas A&M University,
Mechanical Engineering Dept.

Dynamics of Rotating
Machinery

Christensen, Ronald University of New Mexico,
Dept. of Math & Statistics

Statistics

Christodoulou, Leo DARPA Materials
Cornwell, Phillip J. Rose-Hulman Institute of Technology,

Dept. of Mechanical Engineering
Structural Dynamics,
Engineering Education

Crow, Eddie C. Penn State Applied Research Laboratory Intelligent Systems
Monitoring

Diness, Arthur M. Institute of Defense Analyses Materials-microstructural
Development

Doebling, Scott W. Los Alamos National Laboratory,
Engineering Analysis Group

Model Validation,
Uncertainty Quantification

Ewins, David J. Imperial College of Science, Tech & Medicine
Dept. of Mechanical Engineering

Vibration Engineering

Farrar, Charles R.  Los Alamos National Laboratory,
Engineering Analysis Group

Structural Health
Monitoring

Fugate, Michael L. Los Alamos National Laboratory Linear Statistical Models
Girrens, Steven P. Los Alamos National Laboratory,

Engineering Analysis Group
Large Scale Numerical
Modeling

Glaser, Steven D. University of California, Berkeley,
Dept. of Civil & Environmental Eng.

Monitoring &
Instrumentation, Technology
Integration

Hemez, Francois M. Los Alamos National Laboratory,
Engineering Analysis Group

Modeling & Validation

Hjelm, Lawrence N. Hjelm Engineering, Consultant Aerospace Materials and
Processes

Hunter, Norman F., Jr. Los Alamos National Laboratory, Vibration Testing & Signal
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Measurement and Testing Group Processing
Hush, Donald R. Los Alamos National Laboratory Machine Learning
Inman, Daniel J. Virginia Tech, CIMSS Structural Health

Monitoring and Smart
Structures (vibration)

Kenny, Thomas Stanford University,
Dept. of Mechanical Engineering

Sensing & Diagnostics

Kosmatka, John B. University of California, San Diego,
Dept. of Structural Eng.

Structural Damage
Determination

Kulowitch, Paul J. Naval Air Systems Command,
Naval Air Warfare Center Aircraft Division

NDI, Technology
Integration & Applications

Larsen, James M. U.S. Air Force,
Air Force Research Laboratory

Life Prediction and
Durability

Law, Kincho H. Stanford University,
Dept. of Civil & Environmental Engineering

Damage Detection, System
Integration

Lee, Eui W. Naval Air Systems Command Technology Integration &
Applications

Lieven, Nicholas A.J. University of Bristol,
Dept. of Aerospace Engineering

Modal Testing/Analysis of
Stressed Structures

Liu, Cheng Los Alamos National Laboratory Dynamic Fracture
Mechanics, Constitutive
Modeling of Materials

Martinez, David R. Sandia National Laboratories Analytical Structural
Dynamics

Matic, Peter Naval Research Laboratory,
Multifunctional Materials Branch

Materials & Solid
Mechanics

McConnell, Kenneth G. Iowa State University,
Professor Vibration Engineering, Aerospace &
Mechanics (Retired)

Monitoring &
Instrumentation, Vibration
Testing, Frequency & Modal
Analysis

Meilunas, Ray Naval Air Systems Command Fiber Optic
Sensors/Composites

Orisamolu, Irewole R. United Technologies Research Center Prognostics, Probabilistic
Mechanics

Paez, Thomas Sandia National Laboratories Prognostics, Probabilistic
Mechanics

Parlos, Alexander G. Texas A&M University, Department of Mechanical
Engineering

Diagnosis and Prognosis of
Rotating Machines

Rabern, Donald A. Montana State University,
Dept. of Civil Engineering

Structural Health
Monitoring, Dynamic
Fracture Mechanics

Rasmussen, Bruce A. U.S. Air Force,
Air Force Research Laboratory

Turbine Engine Materials &
Manufacturing

Schreyer, Howard L. University of New Mexico,
Dept. of Mechanical Engineering (Retired)

Computational Mechanics,
Damage Mechanics

Schultze, John G. Los Alamos National Laboratory,
Engineering Analysis Group

Structural Dynamics

Shumway, Robert H. University of California, Davis,
Dept. of Statistics

Time Series Analysis, Signal
Processing, Seismic &
Infrasound Arrays, Nuclear
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Monitoring
Smallwood, David O. Sandia National Laboratories Signal Processing, Testing
Sohn, Hoon Los Alamos National Laboratory,

Engineering Analysis Group
Structural Health
Monitoring

Stoffer, David S. University Of Pittsburgh,
Dept. of Statistics

Statistics

Swanson, David C. Penn State Applied Research Laboratory Acoustic & Signal
Processing

Todd, Michael D. Naval Research Laboratory Fiber Optic Structural
Sensors & Structural Health
Monitoring

White, Edward V. The Boeing Company Smart Structures
Womack, Kathie Los Alamos National Laboratory Admin Support
Worden, Keith University of Sheffield,

Dept. of Mechanical Engineering
Signal Processing

Zimmerman, David C. University of Houston,
Dept. of Mechanical Engineering

Modeling & Inverse
Problems
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APPENDIX B: DAMAGE-PROGNOSIS APPLICATIONS

B1: Creep Rupture in Turbine Blades

Problem: Turbine blades typically must function in high-temperature environments (>1000 K) for
tens of thousands of hours. A jet engine layout and typical turbine blade are shown in Figures B1
and B2 respectively. Modern turbine blades are often grown as a single crystal of a nickel
superalloy. Even so, the harsh thermal environment necessarily makes creep and therefore creep
rupture a major consideration. From a damage-prognosis standpoint, the primary goal is to
determine the current creep and then estimate the remaining time to failure, given anticipated
operating conditions.

Figure B1 Jet engine layout. Figure B2  Turbine blade.

Motivation: Catastrophic failures of turbines can have very high direct and indirect economic costs
(greater than $10 million) as well as very high human costs (hundreds of lives).

Challenges:
• Placement of sensors on the turbine blades is very difficult due to high operating

temperatures, as well as the manufacturing process of the blades.
• Extracting data features that are indicative of creep deformation and impending creep

rupture is difficult in the absence of direct strain measurements.

Current online monitoring techniques:
• Thermal radiation monitoring products are available to directly assess blade temperature

(e.g., Land Infrared, Land Instruments, Intl.), to facilitate creep estimation.
• Reflected light during blade passage has been used to determine blade vibration (Arnold

Engineering Development Center, Arnold Air Force Base, Tullahoma, Tennessee).
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B2: Fighter Aircraft Condition Monitoring in Hostile Environments

Problem: Combat aircraft operating in hostile environment may, not surprisingly, incur damage
from enemy fire. From a damage-prognosis standpoint, the primary goal is to detect and quantify
damage to give a reconfigurable control system the updated system model it needs to maximize
aircraft life and performance. A reconfigurable control system automatically changes the control
laws that govern the behavior of the control surfaces as the system or operating condition changes.
Figure B3 shows a Vista F-16 landing with a failed left-side stabilator.

Motivation: In combat situations, it is critical to maximize aircraft and pilot survivability for
economic, human, and national security reasons, as well as to ensure completion of the mission.

Challenges:
• Damage location is unknown.
• Multiple types of failure are possible.

o  Many sensors will be required to monitor different failure types, leading to issues
associated with data fusion and management.

o Failure types may interact; e.g., “Could a plausibly survivable structural failure cause
a critical hydraulic or electrical failure?”

• The operational environment is uncertain.
• Prognosis must be done in near real time.
• There are already stringent operational constraints on hardware (weight, electrical

characteristics, etc.) associated with fighter aircraft design.

Current technologies:
• AFRL and others have made significant research efforts in the areas of integrated

diagnostics and reconfigurable control.

Figure B3 Vista F-16 with a failed left-side stabilator landing successfully with the use of
reconfigurable control.
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B3: Flaw Initiation and Propagation in Explosive Containment Vessels

Problem: Pressure vessels like those shown in Figure B4 are used to contain the blast, fragments,
and toxic byproducts of explosive experiments. Rupture of such vessels is obviously a major
concern, although some leakage is often permitted. Explosive-containment vessels are large,
relatively thick metallic structures and inevitably contain flaws such as pores and cracks of various
sizes. This is especially true in weld zones where material properties vary significantly from those
of the parent material and are less well understood. These flaws become more severe under load,
eventually growing to the point where a significant load event would induce a catastrophic failure.
Standard design models, and even high-fidelity physics-based finite element models (see Figure
B5), are currently incapable of predicting damage accumulation and eventual failure with an
acceptable degree of reliability.

Figure B4 Explosive-containment pressure vessels.  Figure B5 Results from a high-fidelity finite-
element (FE) model.

Motivation: Fabrication of these vessels using a design that meets all relevant criteria is at the edge
of current capabilities, both for forming and welding. Also, in the current regulatory environment,
qualification of new designs and acceptance of deliverable hardware are complicated processes.
Therefore, explosive-containment vessels are quite expensive and maximal reuse is a major priority.

Challenges: While it is possible to inspect for flaw initiation and growth after a significant load
event, the ability to predict damage before an event, not to mention the remaining useful life with
respect to a series of anticipated load events, is hampered by several technical challenges. These
challenges include the following:

Monitoring and instrumentation
• Initial characterization of flaws
• Measurement of transient pressure and fragment impact loads
• Global and local response measurements
• Detection of flaw growth and damage accumulation
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Modeling and simulation
• Damage, damage accumulation, and damage propagation models
• Material failure models
• Mapping from global response to local damage and failure
• Validation of models

Data interrogation and analysis
• Determination of optimal load and response features for damage identification
• Metrics for comparison of measured and simulated features
• Quantification of uncertainties associated with models, tests, and hardware
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B4: Health Monitoring of Composite Fuel Tanks on Reusable Launch Vehicles

Problem: The goals of NASA’s second-generation reusable launch vehicle (RLV) program (see
Figure B6) require the ability to employ each vehicle in a quick-turnaround mode. To significantly
reduce the time for inspection of RLV structures between flights, an integrated vehicle health
management (IVHM) system will be employed to aid diagnosis of structural damage. One aspect of
this inspection system is the detection of flaws and delamination in the composite tanks that house
cryogenic fuels. Nothing is known about the possible use of this data for prognosis of structural
performance.

Motivation: For the RLV, the goal is to reduce the cost of delivering a pound of payload to low
Earth orbit from today's $10,000 to $1000 by the year 2010. For the IVHM, the goal is to improve
the expected safety of launch so that by the year 2010 the probability of losing a crew is no worse
than 1 in 10,000 missions.

Figure B6 (Left) Concept art for the X-33 Venture Star Reusable Launch Vehicle. (Right)
Composite liquid hydrogen tanks for X-33.

Challenges:
• Sensors must be robust for the space flight environment, yet lightweight, low power, and free of

electrical spark sources.
• Embedding sensors in composites introduces uncertainties into the structural response

calculations.
• Damage-diagnosis technique must detect flaws both on the surface and through the thickness of

the structure.
• Flaws are typically small with respect to the size of the tank.
• Time constraints for inspection are tight.

Currently proposed inspection techniques:
Bragg-grating fiber optics embedded or wound on tanks to measure local strains.
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B5: Electric Motors and Driven Loads

Problem: Electric motors and motor-driven loads (e.g. pumps, compressors, fans, conveyor belts,
etc.) represent the most common industrial machines, with over 6 billion units installed worldwide .
Such machines operate in harsh environments and they are often critical for the operation of various
processes. From a damage prognosis standpoint, the primary goal is to determine the present
electrical and mechanical condition of the motor-coupling-load system and then estimate the
remaining time to failure, given anticipated operating conditions. Two typical damage scenarios are
shown in Figures B7 and B8.

Figure B7 Staged broken rotor bar fault. Figure B8 Staged stator insulation fault.

Motivation: Catastrophic failures of electric motors or motor-driven loads can have very high
economic costs because of process downtime, emergency maintenance costs, and in some instances,
high human costs. Operating the system with developing incipient faults also impacts the system’s
energy efficiency.

Challenges:
• The lack of sensors for mechanical condition monitoring; only the largest and most

expensive motor-load systems have permanent sensors beyond those needed for over-current
protection. Industry is not willing to retrofit systems with additional sensors, and
manufacturers are skeptical about adding more sensors, because of the cost.

• The significant variability found in the components of mass-produced systems, and the
associated fault and damage signatures.

• Detailed design parameters are not available to the users of systems already installed.

Current online monitoring techniques:
• No continuous online monitoring.
• Portable current transformers and potential transformers are used in electric current

monitoring to detect electrical faults, and portable accelerometers are used for vibration
monitoring.

• Present monitoring techniques are about 50%–60% effective in detecting and diagnosing
motor and driven-load faults.
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B6: Composite Plate Structures

Problem: This project will begin to demonstrate damage-prognosis solutions by applying the
developed sensing and instrumentation, data interrogation, and predictive modeling technologies to
a series of tests on composite plates.

Motivation: These tests were motivated by input LANL engineers received from aerospace
companies about predicting the evolution of damage resulting from impact and subsequent fatigue.

Challenges:
Experimental: Seventy-centimeter-square, 6-mm-thick composite plates will be subjected to impact
from a 200-gm steel projectile fired at 30–50 m/s using the LANL gas gun facility. The projectile
has a 25-mm hemispherical impact surface. After seeding damage through the impact, the plate will
be subjected to a sinusoidal loading.

Analytical/Computational: Finite element analysis (FEA) will be used to train surrogate models,
neural networks, or support vector machines to predict impact location and velocity from strain
sensor readings as depicted in Figure B9. The surrogate models are also referred to metamodels.
FEA will then be used to develop surrogate models that can locate and quantify damage based on
strain-sensor readings and knowledge of the impact location and velocity (depicted in Figure B9).
An additional surrogate model will be developed that can predict fatigue-damage accumulation
based on known initial damage and strain measurements that were made during fatigue loading
(shown in Figure B10). Pre-established thresholds for fatigue-damage accumulation will signal
failure for the system, and the surrogate model will predict the time to reach this threshold under the
given loading environment (summarized in Figure B11). A snapshot from an explicit finite-element
run showing the projectile impacting a composite plate is shown in Figure B12.

The benefits of ASCI computing are evident when one considers the numerical simulation of the
damage initiation by the projectile impact. This 50,000-element explicit calculation was run for
0.5 ms. Using six 195-MHz processors on an SGI Origin 2000 computing system, each run takes
over 12 hours to complete. Using 200 processors on the ASCI Blue Mountain computer reduces this
run time to 15 minutes. This time savings is significant when one considers that 1000 simulations
were used to train the neural network that estimates impact location and velocity based on the nine
sensor readings.

Current online monitoring techniques:

Nine biaxial strain gauges will be evenly placed on the structure to monitor its response to the
impact and to the subsequent harmonic input. In addition, local active-sensing systems using PZT
sensor/actuators will be employed for postimpact and postharmonic test damage-interrogation.
Figure B13 shows the PZT sensing system mounted on the composite plate and the associated data-
acquisition system.
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Figure B9 Development of surrogate models that identify impact velocity and location as well as
initial damage state. Surrogate models are trained with finite-element analysis.

Figure B10 Process of updating estimates of the damage state during subsequent fatigue loading.
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Figure B11 Process of updating estimates of the damage state during subsequent fatigue loading.

Figure B12 Finite-element model of a projectile impacting a composite plate.
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Figure B13 Active PZT sensing system developed by Acellent Technologies, Inc., mounted on a
composite plate, and the associated data-acquisition system.
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APPENDIX C: LIST OF RESOURCES RESEARCHED

Elements of Damage-Prognosis Technology

Table C-1 Elements of Damage-Prognosis Technology.
Paper 1-AMA 2-DI 3-EPC 4-LAP 5-NST 6-SI 7-SM 8-UQ
1 X X X
2 X
3 X
4 X
5 X X
6 X X
7 X
8 X
9 X
10 X X
11 X X
12 X X X
13 X X
14 X
15 X
16 X
17 X X
18 X X
19 X
20 X X
21 X X
22 X X X
23 X
24 X
25 X
26 X
27 X
28 X X
29 X
30 X
31 X X
32 X
33 X
34 X
35 X X
36 X X
37 X
38 X X X
39 X
40 X
41 X
42 X X
43 X_ X
44 X_ X
45 X
46 X X
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Table C-1. Elements of Damage-Prognosis Technology (cont.)

Paper 1-AMA 2-DI 3-EPC 4-LAP 5-NST 6-SI 7-SM 8-UQ
47 X X
48 X X
49 X X
50 X X
51 X
52 X
53 X
54 X
55 X X
56 X
57 X
58 X
59 X
60 X X
61 X
62 X
63 X
64 X
65 X X
66 X X
67 X
Total 8 14 17 3 11 5 24 18

Symbols: 1-AMA, Advanced Modeling and Architectures
2-DI, Data Interrogation
3-EPC, Elements of Prognosis Capability
4-LAP, Local Actuation and Processing
5-NST, Novel Sensing Technology
6-SI, System Integration
7-SM, Surrogate Modeling
8-UQ, Uncertainty Quantification
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Table C-2 List of Resources Researched.

Identifier Year(s)
Journal, Conference, or Database Number

of Papers
3-EPC
Papers

STAN-99 1999 Proceedings of the 2nd International Workshop on
Structural Health Monitoring, Stanford University,
Stanford, California, September 8-10, 1999, Edited by
F.K. Chang, Technomic Publishing Company, Inc.,
Lancaster, Pennsylvania

102 4

STAN-97 1997 Proceedings of the 1st International Workshop on
Structural Health Monitoring, Stanford University,
Stanford, California, September 18-20, 1997, Edited
by F.K. Chang, Technomic Publishing Company, Inc.,
Lancaster, Pennsylvania

67 4

DAMAS-97 1997 Proceedings of DAMAS ’97, International
Conference on Structural Damage Assessment Using
Advanced Signal Processing Procedures, University
of Sheffield, Sheffield, U.K., June 30-July 2, 1997,
Edited by J.M. Dulieu-Smith, W.J. Staszewski, and K.
Worden, Sheffield Academic Press, Sheffield, U.K.

39 1

COST-00 2000 Proceedings of the European COST-F3 Conference
on System Identification and Structural Health
Monitoring, Universidad Politécnica de Madrid,
Madrid, Spain, June 6-9, 2000, Edited by J.A.
Güemes, and S.L. Gráficas, Madrid, Spain

76 2

JEM-00 2000 ASCE Journal of Engineering Mechanics, Vol. 126,
No. 7, July 2000

2 0

IJF-01 2001 International Journal of Fatigue, Vol. 23, 2001 2 2
SPIE-00 2000 Proceedings of SPIE, Nondestructive Evaluation of

Highways, Utilities and Pipelines IV, March 2000,
Vol. 3995, Edited by A.E. Aktan and S.R. Gosselin

2 1

MSSP-97 1997 Mechanical Systems and Signal Processing, Vol. 11:
No. 1, January 1997; No. 2, March 1997; No. 3, May
1997; No. 4, July 1997; No. 5, September 1997; No.
6, November 1997

64 0

MSSP-98 1998 Mechanical Systems and Signal Processing, Vol. 12:
No. 1, January 1998; No. 2, March 1998; No. 3, May
1998; No. 4, July 1998; No. 5, September 1998; No.
6, November 1998

52 0

MSSP-99 1999 Mechanical Systems and Signal Processing, Vol. 13:
No. 1, January 1999; No. 2, March 1999; No. 3, May
1999; No. 4, July 1999; No. 5, September 1999; No.
6, November 1999

59 1

MSSP-00 2000 Mechanical Systems and Signal Processing, Vol. 14:
No. 1, January 2000; No. 2, March 2000; No. 3, May
2000; No. 4, July 2000; No. 5, September 2000; No.
6, November 2000

57 2

MSSP-01 2001 Mechanical Systems and Signal Processing, Vol. 15,
No. 1, January 2001

16 0

Total 538 17
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APPENDIX D: LIST OF PAPERS REVIEWED

Table D-1. List of Papers Reviewed.
Paper Author(s) Title Publication Reference
1 R. Ikegami “Structural Health Monitoring:

Assessment of Aircraft Customer
Needs”

STAN-99 pp. 12-23,
Review Paper

2 P.D. Foote “Structural Health Monitoring: Tales
From Europe”

STAN-99 pp. 24-35,
Review Paper

3 S.C. Liu “Natural Hazard Mitigation: Exploring
the Technological Frontiers”

STAN-99 pp. 36-55,
Review Paper

4 A. Mita “ Emerging Needs in Japan for Health
Monitoring Technologies in Civil and
Building Structures”

STAN-99 pp. 36-67,
Review Paper

5 V.K. Varadan
V.V. Varadan

“Wireless Remotely Readable and
Programmable Microsensors and
MEMS for Health Monitoring of
Aircraft Structures”

STAN-99 pp. 96-105,
Review Paper

6 J.N. Kudva
M.J. Grage
M.M. Roberts

“Aircraft Structural Health Monitoring
and Other Smart Structures
Technologies — Perspectives on
Development of Future Smart Aircraft”

STAN-99 pp. 106-119,
Review Paper

7 E. Robeson
B. Thompson

“Tools for the 21st Century: MH-17E
SUMS”

STAN-99 pp. 179-189

8 G.A. Johnson
K. Pran
G. Wang
G.B. Havsgård
S.T. Vohra

“Structural Monitoring of a Composite
Hull Air Cushion Catamaran With a
Multi-Channel Fiber Bragg Grating
Sensor System”

STAN-99 pp. 190-198

9 C. Papadimitriou
L.S. Katafygiotis
K.V. Yuen

“Optimal Instrumentation Strategies for
Structural Health Monitoring
Applications”

STAN-99 pp. 543-552

10 A. Todoroki
Y. Shimamura
T. Inada

“Plug and Monitor System Via
Ethernet With Distributed Sensors and
CCD Cameras”

STAN-99 pp. 571-580

11 M.R. Carlos
R.D. Finlayson
R.K. Miller
M.A. Friesel
LL. Klokus

“Acoustic Emission On-Line
Monitoring Systems (AEOLMS)”

STAN-99 pp. 581-593

12 C.R. Farrar
T.A. Duffey
S.W. Doebling
D.A. Nix

“A Statistical Pattern Recognition
Paradigm for Vibration-Based
Structural Health Monitoring”

STAN-99 pp. 764-773,
Review Paper

13 K. Worden
G. Manson
R. Wardle
W. Staszewski
D. Allman

“Experimental Validation of Two
Structural Health Monitoring Methods”

STAN-99 pp. 784-799
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Table D-1 List of Papers Reviewed (cont.)
Paper Author(s) Title Publication Reference
14 H.T. Vincent

S.L.J. Hu
Z. Hou

“Damage Detection Using Empirical
Mode Decomposition Method and a
Comparison With Wavelet Analysis”

STAN-99 pp. 891-900

15 R.A. DeCallafon “On-Line Damage Identification Using
Model-Based Orthonormal Functions”

STAN-99 pp. 912-920

16 C. Zhang
T.R. Kurfess
S. Danyluk
S.Y. Liang

“Dynamic Modeling of Vibration
Signals for Bearing Condition
Monitoring”

STAN-99 pp. 926-935

17 V. Lopes
G. Park
H.H,. Cudney
D.J. Inman

“Smart Structures Health Monitoring
Using Artificial Neural Network”

STAN-99 pp. 976-985

18 T. Inada
Y. Shimamura
A. Todoroki
H. Kobayashi
H. Nakamura

“Damage Identification Method for
Smart Composite Cantilever Beams
With Piezoelectric Materials”

STAN-99 pp. 986-994

19 K.C. Park
G.W. Reich
K.F. Alvin

“Structural Damage Detection Using
Localized Flexibilities”

STAN-97 pp. 125-139

20 M.W. Vanik
J.L. Beck

“A Bayesian Probabilistic Approach to
Structural Health Monitoring”

STAN-97 pp. 140-151

21 L.S. Katafygiotis
H.F. Lam

“A Probabilistic Approach to Structural
Health Monitoring Using Dynamic
Data”

STAN-97 pp. 152-163

22 J.D. Achenbach
B. Moran
A. Zulfiqar

“Techniques and Instrumentation for
Structural Diagnostics”

STAN-97 pp. 179-190,
Review Paper

23 T.L. Vandiver “Health Monitoring of U.S. Army
Missile Systems”

STAN-97 pp. 191-196,
Review Paper

24 S.W. Doebling
C.R. Farrar
P.J. Cornwell

“A Computer Toolbox for
Damage Identification Based on
Changes in Vibration
Characteristics”

STAN-97 pp. 241-254

25 I. Searle
S. Ziola
S. May

“Damage Detection Experiments
and Analysis for the F-16”

STAN-97 pp. 310-324

26 H. Bach
R. Markert

“Determination of the Fault Position in
Rotors for the Example of a Transverse
Crack”

STAN-97 pp. 325-335

27 C.R.  FarrarS.W.
Doebling

“Lessons Learned From Applications
of Vibration-Based Damage
Identification Methods to a Large
Bridge Structure”

STAN-97 pp. 351-370,
Review Paper
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Table D-1. List of Papers Reviewed (cont.)
Paper Author(s) Title Publication Reference
28 P. Neuzil

F.M. Serry
O. Krenek
G.J. Maclay

“An Integrated Circuit to Operate a
Transponder With Embeddable MEMS
Microsensors for Structural Health
Monitoring”

STAN-97 pp. 492-501

29 C. Boller
C. Biemans

“Structural Health Monitoring in
Aircraft — State-of-the-Art,
Perspectives and Benefits”

STAN-97 pp. 541-552,
Review Paper

30 T. Simmermacher
G.H. James III
J.E. Hurtado

“Structural Health Monitoring of
Wind Turbines”

STAN-97 pp. 788-797

31 S.G. Pierce
W.J. Staszewski
K. Worden
W.R. Philip
B. Culshaw
G.R. Tomlinson

“Lamb Wave Testing of Composite
Plates Using Optical Fiber Sensors”

DAMAS-97 pp. 41-52

32 S.W. Doebling
C.R. Farrar

“Using Statistical Analysis to Enhance
Modal-Based Damage Identification”

DAMAS-97 pp. 199-211

33 M. Pirner
O. Fischer

“Monitoring Stresses in GRP
Extension of the Prague TV Tower”

DAMAS-97 pp. 451-460

34 K. Worden “Nonlinearity in Structural Dynamics:
The Last Ten Years”

COST-00 pp. 29-51,
Review Paper

35 H. Sohn
C.R. Farrar

“Statistical Process Control and
Projection Techniques for Damage
Detection”

COST-00 pp. 105-114

36 K. Worden
A.J. Lane

“Damage Identification Using Support
Vector Machines”

COST-00 pp. 201-211

37 J.B. Bodeux
J.C. Golinval

“ARMAV Model Technique for
System Identification and Damage
Detection”

COST-00 pp. 303-312

38 J.S. Sakellariou
S.D. Fassois

“Parametric Output Error-Based
Identification and Fault Detection in
Structures Under Earthquake
Excitation”

COST-00 pp. 323-332

39 B. Peeters
J. Maeck
G. De Roeck

“Dynamic Monitoring of the Z-24
Bridge: Separating Temperature Effects
From Damage”

COST-00 pp. 377-386

40 S.W. Doebling
F.M. Hemez
W. Rhee

“Statistical Model Updating and
Validation Applied to Nonlinear
Transient Structural Dynamics”

COST-00 pp. 409-418

41 L. Mevel
A. BenvenisteM.
Basseville
M. Goursat

“In Operation Structural Damage
Detection and Diagnosis”

COST-00 pp. 641-650

42 S.R. Hunt
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